A

0200MAT266042501

Reg No.:____

Name:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (R,S) Exam April 2025 (2019 Scheme)

Course Code: MAT266

Course Name: MATHEMATICAL FOUNDATIONS FOR SECURITY SYSTEMS

Max. Marks: 100 Duration: 3 Hours

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Define a ring with a suitable example.	3
2	Does there exist a field of order 2025? Justify your answer.	3
3	Prove that $p(x) = x^2 + x + 2$ is an irreducible polynomial in $GF(3)$.	3
4	Show that $\{(1,0,1),(0,1,1),(1,1,0)\}$ form a basis of \mathbb{R}^3 .	3
5	Is 271 a prime number?	3
6	Find the Euler totient function of 240 and 101.	3
7	Using the divisibility test determine whether 943 is a prime or not.	3
8	Factorize $n = 2419$, using Fermat's method.	3
9	The probability that there will be 0,1,2,3 defective light bulbs in a randomly	3
	selected batch of bulbs produced in a factory are 0.6, 0.3, 0.08, 0.02 respectively.	
	Find the mean and variance of the number of defective bulbs in a randomly	
	selected batch	
10	Determine the binomial distribution for which mean is 4 and variance is 3	3

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

Page 1 of 3

0200MAT266042501

a) Define a ring. Show that $\langle Z_6, +, \cdot \rangle$ is a ring. 7 b) Show that GF(4) is a subfield of GF(256). Let α be a primitive element in 7 GF(256). Find a positive integer k for which $\beta = \alpha^k \in GF(4)$. 12 a) Find the power representation and polynomial representation of elements in the 7 extension field $GF(2^4)$ using the primitive polynomial $p(x) = x^4 + x + 1$. b) Illustrate the subfields of GF (2^{24}) . 7 Module -2 13 a) Is $f(x) = x^4 + x + 1$ a primitive polynomial. Justify your answer 7 b) Show that the intersection of two subspaces of a vector space V is a subspace of 7 V. What about their union? Justify your answer. 14 a) What is the dimension of the vector space spanned by the vectors $\{(1,1,0,1,0,1),$ 7 (0,1,0,1,1,1), (1,1,0,0,1,1), (0,1,1,1,0,1), (1,0,0,0,0,0,0) over GF (2). b) Determine all the conjugacy classes in $GF(2^4)$ w.r.t GF(2). 7 Module -3 15 a) Find the gcd (841,160), and also express 'gcd' as an integer linear combination 7 of 841 & 160. b) State Fermat's Little theorem. Using it, find the following; 7 (i) 145¹⁰² mod 101 (ii) 27⁻¹ mod 41. 16 a) Solve (a) $6^{24} \pmod{35}$ (b) $71^{-1} \pmod{100}$ using Euler's theorem. 7 b) Define Euler's totient function $\phi(n)$, for a positive integer n. Explain the rules 7 to calculate $\phi(n)$ for a given positive integer n and calculate $\phi(2025)$. Module -4 17 a) Does the number 341 pass Fermat's primality test to the base 2? Justify your

answer.

0200MAT266042501

b) Solve the following system of linear congruences using Chinese remainder theorem;

7

7

7

7

7

$$x \equiv 1 \pmod{3}$$
, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$

18 a) Solve the following quadratic congruences;

(i)
$$x^2 \equiv 2 \pmod{23}$$
 ii) $x^2 \equiv 6 \pmod{19}$ iii) $x^2 \equiv 7 \pmod{11}$

b) Using pollard (P-1) method, Find a non-trivial factor of n = 2813.

Module -5

19 a) A random variable X has the following probability distribution;

$x \neq 0$	-2	-1	0	1	2	3
p(x)	0.1	k	0.2	2 <i>k</i>	0.3	k

Find i) the value of k ii) E(X) iii) $E(X^2)$ iv) V(X) v) E(2X + 3) vi) V(2X + 3).

- b) Define entropy of a random variable. Compute the entropy of the random variable which counts the number of heads in flipping three fair coins.
- 20 a) State and prove Markov's inequality
 - b) Gracefully estimate the probability that in 100 flips of a fair coin the number of heads will be at least 40 and no more than 60.