0200EET206052403

Reg No.:_____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S2 (PT) (S, FE) / S4 (WP) (S) Examination December 2024 (2019 Scheme)

Course Code: EET 206 Course Name: DIGITAL ELECTRONICS

Max. Marks: 100

Duration: 3 Hours

6.

Pages

		PART A (Answer all questions; each question carries 3 marks)	Marks
1		Subtract 32 from 21 using 8-bit 2's complement arithmetic. Write the necessary	(3)
		steps.	
2		Compare the performance of TTL and CMOS logic families.	(3)
3		Express the Boolean function, $f(X, Y, Z) = XY + \overline{X}Z$ as product of maxterms.	(3)
4		Derive an expression for the sum of a full adder.	(3)
5		Implement the sum of minterms expression, $f(A, B, C) = \sum m(0, 1, 5, 6)$ using a 4:1 multiplever	(3)
6		List three functions of Arithmetic and Logic Unit (ALU).	(3)
7		Derive the characteristic equation of a I-K flin-flop.	(3)
8		What is meant by ' <i>race ground</i> ' in flip-flops? How it can be eliminated?	(3)
9		Draw the circuit diagram of a 4-bit weighted resistor type digital to analog converter	(3)
		(DAC). Write an expression for its output.	
-10		Define any three performance parameters of an analog to digital converter (ADC).	(3)
		PART B (Answer one full question from each module, each question carries 14 marks) Module -1	
11	a)	Perform the following number conversions:	, (6)
		 (i) (476.37)₈ to binary. (ii) (A9C.FB)₁₆ to octal. (iii) (101110.101)₂ to decimal. 	
	b)	Explain CMOS NOR gate with the help of internal diagram.	(8)
12	a)	Find out equivalent decimal number if 1101101 is expressed in (i) sign-magnitude	(6)
	1.5	With the help of a post internal diagram, evaluin the working of TTL NAND gate	(8)
	D)	with the neip of a near internal diagram, explain the working of TTE White gate.	

0200EET206052403

Module -2

- 13 a) With the help of a truth table, derive an expression for the difference and borrow (8) bits of a full subtractor. Draw the logic diagram.
 - Simplify the Boolean function $f(A, B, C, D) = \sum m(1, 4, 5, 6, 7, 10, 12) + (6)$ d(8,11,13)
- 14 a) Simplify the Boolean functions to minimum number of literals: (6)

(1)
$$f(P,Q,R,S) = P + Q[PR + (Q + \overline{R})S]$$

(ii)
$$f(X, Y, Z) = (X + Y\overline{Z}) (X\overline{Y} + XYZ)$$

b) With a neat circuit diagram explain the working of a 4-bit parallel adder. What is its (8) drawback when compared to a carry look-ahead adder?

Module -3

- 15 a) Write down the truth table of a 2 to 4 decoder with active-low enable input and (5) active-high outputs. Implement this decoder using AND and NOT gates.
 - b) Design and implement a 4-bit binary to Gray code converter. (9)

16

b)

Write down the truth table for a BCD-to-seven segment decoder. Deduce the (14) Boolean expression for each output.

Module -4

- 17 a) Convert an S-R flip-flop to a J-K flip flop. Write the necessary truth table. (6)
 - b) What is a shift register? Draw the logic diagram of a 4-bit serial-in, serial-out (SISO) (8) shift register using D flip-flops. Explain its operation with the help of an example.
- 18 a) Draw the logic circuit diagram of a 4-bit ring counter which employs D flip-flop. (5)
 Write down its count sequence table.
 - b) Design a mod-10 asynchronous up-counter using J-K flip-flops. Draw the timing (9) diagram and relevant excitation table.

Module -5

19	a)	What is PAL? List three advantages of PAL over PLA.	(5)
	b)	Draw the block diagram of a successive approximation type ADC. Explain how it	(9)
		converts an analog signal to a digital signal.	
20	a)	List any four applications of FPGA.	(4)
	b)	Implement a full adder in Verilog. Draw the necessary logic circuit and truth table.	(10)