0200CET204122302

Reg No.:

С

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S4 (PT) (S, FE) / S4 (WP) (S) Examination December 2024 (2019 Scheme)

Course Code: CET204

Course Name: GEOTECHNICAL ENGINEERING - I

Max. Marks: 100

Duration: 3 Hours

Pages: 3

(Graph sheets can be used) PART A

	(Answer all questions; each question carries 3 marks)	Marks		
1	Explain sensitivity and Thixotropy.	3		
2	With a three phase diagram define void ratio and porosity.			
3	Draw particle size distribution curve representing well graded, poorly graded and			
	gap graded soils.			
4	What is seepage velocity?	3		
5	What do you mean by critical hydraulic gradient?	3		
6	List out the assumptions and limitations of Boussinesq's equation	3		
7	List out any 3 difference between compaction and consolidation	3		
8	What is zero air void line?	3		
9	Explain UU, CU and CD tests.	3		
10	Explain toe failure, base failure and slip failure.	3		

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

11	a)	Derive the expression $\gamma_{sat} = \frac{(G+e)\gamma_w}{(1+e)}$	6						
	b)	A chunk of moist soil weights 10kg and its volume is 0.00625m ³ . After oven	8						
		drying, the mass reduces to 8 kg. Determine the water content, density of moist							
		soil, dry density and porosity. Take G=2.65.							
12	a) Derive the relationship between γ and γ_d								
	b)	Write down the procedure for determining field density by core cutter method and	10						
		sand replacement method. When do you prefer sand replacement method, why?							

0200CET204122302

-

Module -2

13	a)	A soil has a liquid limit of 28% and a flow index of 14%. If the plastic limit is 18%,					8		
		determine the plasticity index	c and th	e toughne	ss index.	If the na	tural water content		
		is 20% find liquidity index an	nd relati	ive consis	tency				
	b)) Draw IS plasticity chart and mark the details. What is its practical application.							
14	a)	a) A soil stratum consists of 3 horizontal layers of equal thickness. The magn					. The magnitude of	9	
		coefficient of permeability fo	r the up	per, midd	e and lov	ver layers	s is 4.5x10 ⁻⁴ cm/sec,		
		6.5x 10 ⁻⁵ cm/sec and 6.8 x 10	⁻⁶ cm/se	ec respecti	vely. Wł	nat is the	ratio of the average		
		permeability of the bed in the	e horizo	ntal and v	ertical di	rection?			
	b)	Explain any 5 factors that affect coefficient of permeability.						5	
			N	Iodule -3					
15	a)	With a neat sketch explain Q	uick sar	nd conditi	on.			4	
	b)	A sand deposit consists of two	o layers	, the top l	ayer is 2.	5 m thicl	c (ρ=1700 kg/m ³ ;)	10	
		and bottom layer is 3.5 m this	ck (p _{sat} =	=2000 kg/i	m ³). The	water tal	ble is at a depth of		
		2.5 m from the surface. Drav	w the d	iagram sh	owing th	ne variati	on of total stress,		
		neutral stress and effective st	ress.						
16	a)	Explain Newmark's chart.						7	
	b)	Calculate the vertical stress a	t a poin	t P at a de	pth of 4	m directl	y under the centre	7	
	of the circular ring type foundation of inner diameter 5m and external diam								
		10m, subjected to a pressure of 100kPa.							
			N	Iodule -4					
17	a)	Explain the procedure for det	erminin	ig pre-con	solidatio	n pressu	re.	6	
	b)	A 20 mm thick laboratory soil sample takes 20 minutes for 20% consolidation,						8	
		under double drainage condit	ion. Fin	d the time	e taken fo	or a 20m	thick soil layer in		
	the field to reach 50% consolidation, if drainage is allowed only in one direction.								
18	a)	Write about control of compa	ction.	-				6	
	b)	Table below gives the light co	ompacti	on test re	sults			8	
		The mould is 1000ml capacity	. The s	pecific gra	wity of th	ne soil pa	rticle is 2.65. Plot		
		Water content (0/)	0 50	10.50	11.50	12.50	14.50		
		Water content (%)	8.50	10.50	11.50	13.50	14.50		
		the mould (g)	1900	2100	2160	2120	2080		

(i) compaction curve (ii)Zero air void line (iii) 90% saturation line

Er

0200CET204122302

Module -5

4

10

6

8

- 19 a) Explain the merits and limitations of triaxial test.
 - b) The following data were obtained in a direct shear test. At failure, Normal pressure is 25 kN/m²and tangential pressure is 20 kN/m². Cohesion of the soil is 12 kN/m². Represent the data by Mohr circle and compute the principal stress and direction of principal planes.

- 20 a) What is meant by stability number and stability chart?
 - b) Discuss with necessary sketches the friction circle method of analysis