0200EET204072302

Reg No.:

Name:

Pages: 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S2 (PT) (S, FE) / S4 (WP) (S) Examination December 2024 (2019 Scheme)

Course Code: EET204 Course Name: ELECTROMAGNETIC THEORY

Max. M	arks: 100	Duration: 3 Hours
	PART A (Answer all questions; each question carries 3 ma	rks) Marks
1	Express the point P $(4, 90^{\circ}, 30^{\circ})$ in cartesian coordinates.	3
2	Explain the physical significance of divergence of a vector field	. 3
3	What is an equipotential surface?	3
4	Why electric field is conservative?	3
5	What is continuity equation of current?	3
6	Find the magnetic flux density for the vector magnetic potential	, 3
	$\bar{A} = e^{-x} siny \bar{a}_x + (1 + cosy) \bar{a}_y$	
7	Define propagation constant	3
8	What is Poynting vector?	3
9	What is reflection coefficient of transmission line?	3
10	A loss-less transmission line has characteristics impedance of 7	70Ω and a phase 3
	constant of 3 rad/m at 100 MHz. Calculate the inductance	per meter and
•	capacitance per meter of the line.	

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

- 11 a) State and explain divergence theorem. b) Vector $\mathbf{A} = \rho \cos\theta \, \bar{a}_{\rho} + \rho z^2 \sin\theta \, \bar{a}_z$ i) Transform A into rectangular coordinates and calculate its magnitude at (3, -4, 0). ii) Transform A into
 - spherical coordinates and calculate its magnitude at (3, -4, 0).
- 12 a) Evaluate both sides of Stoke's theorem for the field $G = 4xa_x + 2x^2y a_y$ and 10 rectangular path around the region $1 \le x \le 2$, $-1 \le y \le 2$, z = 0. Let the positive direction of dS be az
 - b) Define gradient of a scalar function.

4

5

9

0200EET204072302

-

Module -2

13	a)	f V = $x^2y + \frac{2}{x^2+y^2}$ - 40z, find E, D, & ρ_v at P (1, 2, 3)			
	b)	State Gauss's law & explain any one application of Gauss's law	7		
14	a)	Derive an expression for electric field intensity at a point due to an electric	10		
		dipole			
	b)	Find the capacitance of a parallel plate capacitor a) when the plates are of area	4		
		$1m^2$, distance between the plates 1 mm, voltage gradient is 10^5 V/m and the			
		$\rho_s = 2 \mu C/m^2$. b) When the stored energy is 5mJ and the voltage across the			
		plates is 5V.			
	Module -3				
15	a)	Two extensive homogeneous isotropic dielectrics meet on a plane $z = 0$. Region 1 ($z < 0$)contains a dielectric for which $\varepsilon_{r1} = 2.5$ while region 2 ($z > 0$) is characterized by $\varepsilon_{r2} = 4$. A uniform electric field $E_1 = -30 \bar{a}_x + 50\bar{a}_y + 70\bar{a}_z V/m$. Find i) E_2 ii) D_2 iii) Angles E_1 and E_2 make with the normal. iv) Angles E_1 and E_2 make with the interface.	10		
	b)	Write the Maxwell's equations for time varying fields in integral form.	4		
16	a)	Let $\mathbf{A} = (y+z) \mathbf{a}_x + 4xz \mathbf{a}_y$ find vector magnetic potential, magnetic flux density,	10		
		magnetic field intensity & current density at point P (2, -2, 4)			
	b)	Compare conduction current and displacement current	4		
		Module -4			
17	a)	A lossy dielectric material is characterized by $\mu = 2\mu_0$, $\epsilon = 2\epsilon_0$, and $\sigma = \frac{0.03S}{m}$.	10		
		If electric field $\overline{E} = 3e^{-\gamma z} \overline{a}_y V/m$. At a frequency of 30MHz, determine i)			
		propagation constant ii) Intrinsic impedance iii) Magnetic field of the wave.			
	b)	Explain the significance of intrinsic impedance	4		
18	a)	A uniform plane wave with 10 MHz frequency has average Poynting vector .	8		
		1 W/m ² . If the medium is perfect dielectric with $\mu_r = 2$ and $\varepsilon_r = 3$.			
		Find (i) velocity, (ii) wavelength, (iii) intrinsic impedance			
	b)	What is a lossy dielectric?	6		
		Module -5			
19	a)	A distortion less transmission line operating at 250MHz has R = $30\Omega/m$, L=	8		
		200 nH/m and C= $80pF/m$. Determine the i) characteristics impedance ii)			
		Propagation constant iii) Velocity of propagation along the line.			

6.

0200EET204072302

 b) Define standing wave ratio? What is the value of standing wave ratio for i) Short circuited line ii) Open-circuited line iii) a line terminated by its characteristics impedance.

6

10

4

Ein

20 a) Derive an equation for voltage and current at any point of transmission line
b) A lossless transmission line operating at 4.5GHz has L =2.4μH/m and characteristic impedance Z₀ = 85Ω. Calculate phase constant and phase velocity.

Page 3 of 3