A

03GAMAT101122402

Reg No.:____

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular Examination December 2024 (2024 Scheme)

Course Code: GAMAT101

Course Name: MATHEMATICS FOR INFORMATION SCIENCE-1

Max. Marks: 60

Duration: 2 hours 30 minutes

P	Δ	R	T	Δ
	\boldsymbol{r}	1	1	

	(Answer all questions. Each question carries 3 marks)	CO	Marks
1	At what points are the function $g(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3}, x \neq 3 \\ 5, x = 3 \end{cases}$	COI	3
	continuous.		
2	Find the first and second derivatives of $\frac{x^3+7}{x}$.	COI	3
3	Find $\lim_{(x,y)\to(0,0)}\frac{1-\cos(xy)}{xy}$	CO2	3
4	Show that $w_{xy} = w_{yx}$ where $w = e^x + x \ln y + y \ln x$.	CO2	3
5	What are the directions of zero change in $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$ at (1,1)	CO3	3
6.	Find the critical points of the function $f(x, y) = 5xy - 7x^2 + 3x - 6y + 2$.	CO3	3
7	Find the extreme points of $f(x, y) = xy$ subject to the constraints	CO4	3
	x+y=16		
8	Form the LPP by maximising the profit: DC Drug company produces two types of liquid pain killer, N(normal) and S(super). Each bottle of N requires 2 units of		
	drug A, 1 unit of drug B and 1 unit of drug C. Each bottle of S requires 1 unit of	CO4	3
	A, 1 unit of B, 3 units of C. The company is able to produce each week only 1400		
	units of A, 800 units of B and 1800 units of C. The profit per bottle of N and S is		,
	\$11 and \$15 respectively.		

03GAMAT101122402

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

9 a) Find
$$\lim_{x\to 0} \frac{\frac{1}{x-1} + \frac{1}{x+1}}{x}$$
 CO1 3

b) Find the linearization of
$$f(x) = \cos x$$
 at $x = \frac{\pi}{2}$.

6

3

3

3

CO₁

CO₂

c) Determine the concavity of
$$f(x) = x^3 - 6x^2 + 9x + 1$$
.

10 a) Show that
$$y = |x|$$
 is differentiable on $(-\infty, 0)$ and $(0, \infty)$, but has no CO1 derivative at $x = 0$.

b) The area A of a circle is related to its diameter D by the equation
$$A = \frac{\pi}{4}D^2$$
.
How fast does the area change with respect to the diameter when diameter is 10m.

Module -2

11 a) Find
$$\frac{\partial^2 w}{\partial y \partial x}$$
 if $w = xy + \frac{e^y}{y^2 + 1}$ CO2 3

Find the limit of the function
$$\lim_{(x,y)\to(0,0)} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}}$$
.

c) Find
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ for the function $f(x, y, z) = e^{\frac{x}{y}} + e^{\frac{z}{y}}$

12 a) Find the domain and range of the function
$$g(x, y) = \ln(x^2 + y^2)$$
 CO2 3

12

b) If
$$w = e^{x^2y}$$
, $x = \sqrt{uv}$, $y = \frac{1}{v}$, find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at (2,2) using chain rule.

Module -3

13 a) If
$$w = f(x - y, y - z, z - x)$$
, show that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$.

Find the directional derivative at (1,-1) of
$$g(x,y) = \frac{x-y}{xy+2}$$
 in the direction CO3 4 of $\vec{v} = 12\vec{i} + 5\vec{j}$.

14 a) Find the local extrema of
$$f(x,y) = 10xye^{-(x^2+y^2)}$$
 CO3 6

03GAMAT101122402

b) Find the gradient of $f(x, y) = x^2 - xy + y^2 - y$ at (1, -1)

- CO₃
-)3

3

6

4

Module -4

- 15 a) Find the point P(x, y, z) on the plane 2x + y z 5 = 0 that is close to CO4 the origin.
 - b) Minimise the function $f(x, y) = x^2 + y^2$ with starting point (1,1) with CO4 3 step size, $\alpha = 0.1$ in two iterations by the method of steepest descent.
- 16 a) Find the largest and smallest values the function f(x, y) = xy takes on the CO4 5 ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ by Lagrange's multiplier method.
 - b) Solve the following LPP graphically:

 Maximise $z = 6x_1 + 11 x_2$ subject to $2x_1 + x_2 \le 104$ $x_1 + 2x_2 \le 76$

 $x_1 \geq 0, x_2 \geq 0$