0200ECT202052402

Pages: 3

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S2 (PT) (S, FE) / S4 (WP) (S) Examination December 2024 (2019 Scheme)

Course Code: ECT202 Course Name: ANALOG CIRCUITS

Max. Marks: 100

Duration: 3 Hours

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Design a circuit to obtain square wave output from triangular wave input with	3
	5kHz frequency.	
2	In a fixed bias circuit R_B =560K Ω , R_C =3k Ω . Let V_{CC} =12V, β dc=100. Determine	3
	the value of operating point. Choose Si Transistor.	
3	Define the small signal parameters g_m , r_e and r_π for a BJT amplifier.	3
4	Draw the dc and ac load line of RC coupled amplifier with bypass capacitor.	3
5	Compare BJT and MOSFET.	3
6	Discuss the common source MOSFET stage with diode-connected load.	3
7	Emitter follower is a Voltage series feedback amplifier. Justify the statement.	3
8	State and explain Barkhausen criteria for sustained oscillations	3
9	Compare various classes of Power amplifiers.	3
10	Discuss the principle of output current boosting in voltage regulator	3

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

- a) Design a clamper circuit to get Vo=10Sin(1000t) -10V. Draw its i/p and o/p wave
 b) What do you mean by thermal run away? How thermal stabilization is achieved in
 an RC coupled amplifier? Explain with neat sketches and equations.
- 12 a) Design a filter such that lower cutoff frequency equal to zero and upper cutoff 7
 frequency equal to 5kHz.
 - b) Derive design equation of RC Differentiator. Show that output voltage is directly 7
 proportional to the derivative of input voltage.

0200ECT202052402

Module -2

- 13 a) Draw the high frequency hybrid π equivalent circuit of a CE Amplifier and derive 9 the expression for mid band gain and upper cut off frequency
 - b) For an RC coupled amplifier with bypass capacitor, R₁=100 KΩ, R₂=20 KΩ, R_C=3 5 KΩ, R_E=1 KΩ and V_{CC}=12 V. The β of the transistor is very high. Calculate the mid band gain of the amplifier.
- 14 a) For a CE amplifier with potential divider bias, $R_1=56 \text{ K}\Omega$, $R_2=12.2 \text{ K}\Omega$, $R_C=2$ 10 K Ω , $R_E=0.4 \text{ K}\Omega$ and supply voltage $V_{CC}=10 \text{ V}$. The signal source has a source resistance of 0.5 K Ω and β of the transistor is given as 100. Calculate the small signal model parameters g_m , r_{π} and r_e and obtain the voltage gain, input impedance and output impedance of the amplifier. [A bypass capacitor is connected across the emitter resistor]
 - b) State and explain Miller's Theorem.

Module -3

4

5

7

C.

- a) Calculate the drain current and drain-to-source voltage of a common source circuit 8 with an n-channel enhancement mode MOSFET. Given: R₁=22 KΩ, R₂= 10 KΩ, R_D=6.8 KΩ, V_{DD}= 8V, V_T=1 V, K_n= 0.1 mA/V². Also, calculate small signal voltage gain, input and output impedance.
 - b) Why is the bandwidth of a cascode amplifier large when compared to Common 6 source amplifier?
- a) Derive small signal voltage gain, input and output resistance of Common source
 amplifier with constant current source.
 - b) In an Enhancement MOSFET Voltage divider bias circuit threshold voltage 5 (V_T)=2V and the drain current of 8_{mA} at a gate source voltage of 6 V. Calculate the drain current for a Q- point defined by V_{GS}=4 V and V_{DS}=10 V.

Module -4

- 17 a) Explain the working of Wien bridge oscillator and derive feedback factor and
 9 frequency of oscillation.
 - b) Design a Hartley oscillator to generate 1MHz sine wave.
- 18 a) Explain any two effects of negative feedback on amplifier performance.
 - b) Determine the voltage gain, input and output resistance with feedback for voltage 7 series feedback having A=-100, $R_i=10K\Omega$ and $R_0=20K\Omega$ for $\beta=-0.10$

0200ECT202052402

Module -5

- 19 a) Explain the working of Series voltage regulator. Deduce the expression for output 9 voltage.
 - b) With necessary sketches, discuss the fold-back protection in series voltage 5 regulator.
- 20 a) Explain the working of a Transformer coupled Class A power amplifier and derive 7 its maximum efficiency.
 - b) Supply voltage of Complementary Symmetry Class B push pull power amplifier 7 is +12 and -12V. If R_L=8 Ω, Calculate the maximum input power, maximum output power and maximum efficiency.

à,

