0200MAT206122401

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S, FE) / S2 (PT) (S,FE) Examination December 2024 (2019 Scheme)

Course Code: MAT 206 Course Name: GRAPH THEORY

Max. Marks: 100

11

Duration: 3 Hours

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Draw a simple graph each of two, three and five vertices.	3
2	Define walk, path and circuit in a graph.	3
3	Define Hamiltonian circuit and Hamiltonian path. Draw a graph that has a	3
	Hamiltonian path, but does not have a Hamiltonian circuit.	
4	Define Complete symmetric digraphs and complete asymmetric digraphs with	
	example for each.	
5	Prove that any connected graph with n vertices and (n-1) edges is a tree.	3
6	Define spanning tree. Give an example.	3
7	What is a fundamental cut-set ? Illustrate with an example	3
8	Distinguish between separable and non-separable graphs.	3
9	Define adjacency matrix. Write the adjacency matrix of the given graph.	
		3
10	Define chromatic number of a graph with an example.	3
4	PART B (Answer one full question from each module, each question carries 14 marks)	• •

Module -1

a) Prove that the number of vertices of odd degree in a graph is always even.
b) Determine whether the following graphs are isomorphic. Justify your answer.
7

0200MAT206122401

12

- a) Prove that for any simple graph with at least two vertices has two vertices of same 7 degree.
- b) Prove that a graph G is disconnected if and only if its vertex set V can be
 partitioned into two non-empty disjoint subsets V₁ and V₂ such that there exists no
 edge in G whose one end vertex is in subset V₁ and other in subset V₂.

Module -2

13

14

15

1

a) Show that in a complete graph with n vertices there are $\frac{n-1}{2}$ edge disjoint Hamiltonian circuits if n is an odd number ≥ 3 .

7

7

7

7

7

-

- b) Draw equivalence graph for the binary relation " is congruent to modulo 3" defined 7 on {10,11,12,...20}
- a) Explain the operations union, intersection and ring sum on graph with an example
 - b) Distinguish between strongly connected and weakly connected digraphs with examples

Module -3

- a) Prove that the height of a binary tree with n vertices is $\frac{n-1}{2}$
- b) Using Kruskal's algorithm to find the minimal spanning tree for the graph given 7 below. What is the weight of this tree?

a) Prove that a graph with n vertices, (n-1) edges and no circuits is connected.

0200MAT206122401

b) Use Dijkstra's algorithm to find the shortest path between the vertices a and g

- b) Prove that the complete graph on five vertices is non-planar
- a) Prove that with respect to a given spanning tree, a branch that determines a 7 fundamental cut-set S is contained in every fundamental circuit associated with the chord in S, and in no others.
- b) Draw the geometric dual of the graph below.

Module -5

- a) Prove that the rank of an incidence matrix of a connected graph with n vertices is 7 (n-1)
 - b) Prove that an n vertex graph is a tree if and only if its chromatic polynomial is $7 \lambda(\lambda 1)^{n-1}$
- a) Write the circuit matrix and path matrix between v_3 and v_4 for the following graph.

b) Define matching and covering in a graph. Give a detailed example for these.

7

7

7

7

7

7

17

18

19

20