1200MRT304122401

Reg No.:_

Name:

APJ ABDUL KALĄM TECHNOLOGICAL UNIVERSIT RUT

B.Tech Degree S6 (S, FE) Examination December 2024 (2019 Scheme)

Course Code: MRT304

Course Name: DIGITAL IMAGE PROCESSING & MACHINE VISION

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions, each carries 3 marks.	Marks
1	Explain about the diagonal neighbours of a pixel.	(3)
2	What is the need for image transform? Explain.	(3)
3	Explain in detail about homomorphic filtering.	(3)
4	Discuss briefly about image restoration.	(3)
5	Give a brief note on Psycho-visual Redundancy.	(3)
6	List the features of digital image water marking.	(3)
7	Explain about boundary segments.	(3)
8	Explain about any three simple descriptors used to describe region.	(3)
9	Write notes on 3D Vision.	(3)
10	Mention three applications of machine vision systems.	(3)

PART B

Answer any one full question from each module, each carries 14 marks.

Module I

11

s.

Define histogram of an image. Perform histogram equalization on the given (14) digital image. Plot the histogram of original and processed image.

4 4 4 41 3 5 3 4 4 3 3 5 5 3 5 5 3 4 4

OR

12 Compute the DCT matrix for N=4.

(14)

1200MRT304122401

Module II

13		Analyse 3x3 mean filter in frequency domain and show that it behaves like a low	(14)
		pass filter.	
		OR	
14		Explain the various noise models and plot their probability density function with	(14)
		necessary expressions.	
		Module III	
15	a)	Explain the coding procedure used in Huffman coding with suitable example.	(9)
	b)	Give a brief note on bit-plane coding.	(5)
		OR	
16	a)	Explain JPEG image compression with neat sketches.	(9)
	b)	With a neat block diagram, explain lossless predictive coding technique.	(5)
		Module IV	
17		Explain in detail about region based image segmentation.	(14)
		OR	
18		What are edge models? Explain different edge models. Explain the gradient	(14)
		operators used for the calculation of first order derivative.	
		Module V	
19		Draw and explain the block diagram of a simple machine vision system.	(14)
		OR	
20	a)	With a neat sketch explain the working of CCD camera.	(10)
	b)	List the various classification of machine vision.	(4)

1

÷