1200EET302012402

	10014 110014	
Reg No.:	Name:	8
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	CAO KINDLY
	B.Tech Degree S6 (R,S) / S6 (PT) / (WP) Exam April 2025 (2019 Scheme)	PUTUU
		OHO
	Course Code: EET302	
	Course Name: LINEAR CONTROL SYSTEMS	
Max. M	Tarks: 100 Duration: 3	Hours
	PART A	
	Answer all questions, each carries 3 marks.	Marks
1	Define transfer function and find the transfer function of the given RL network.	(3)
	V _{in} R L V _L	
2	Give the characteristics of a lead compensator.	(3)
3	Draw the unit step response of a first order system.	(3)
4	A unity feedback system has an open loop transfer function $G(s)H(s) =$	(3)
	$\frac{s+2}{s(s+1)((s+10))}$. Determine the static error coefficients and steady state errors.	
5	Explain magnitude and angle criterion referred to root locus?	(3)
6	Explain the effect of adding poles and zeros on root locus.	(3)
7	Write the advantages of frequency response analysis.	(3)
8	Define the phase cross over frequency and gain cross over frequency of a system.	(3)
9	State the advantages of Nyquist Plot.	(3)
10	Explain the need for compensation in control system.	(3)
	PART B Answer one full question from each module, each carries 14 marks.	

Module I

- 11 a) Determine the transfer function of a lead-lag compensator using RC circuit (8) components. List the characteristics of the lead-lag compensators.
 - b) Explain the working of an AC Servomotor with a schematic diagram. (6)

OR

12 a) Derive the transfer function of a field controlled DC motor and represent the system (8) in block diagram form.

1200EET302012402

b) Explain the working of a synchro. (6)

Module II

- Derive the expression for rise time and settling time of an under damped second
 order system.
 - b) Determine the damping ratio, damped frequency of oscillation, rise time, peak (6) time, peak overshoot and settling time for the system having closed loop transfer function $\frac{C(s)}{R(s)} = \frac{25}{s^2 + 6s + 25}$.

OR

- 14 a) The forward path transfer function of a unity feedback control system is given by $G(s) = \frac{4s+1}{4s^2}$. Determine the unit step response of the system.
 - b) Using Routh's stability criterion determine the stability of the given system (6) whose characteristic equation is $s^6+2s^5+8s^4+15s^3+20s^2+16s+16=0$.

Module III

- Determine the value of K for which the system with an open loop transfer function (10) $G(s) = \frac{K}{s(s+1)(s+5)}$ exhibit a step response with damping ratio 0.707 using Root locus plot.
 - b) Explain PI and PD controllers, with suitable block diagrams. (4)

OR

- 16 a) Consider a unity feedback system with an open loop transfer function, (10) $G(s) = \frac{K}{s(s+2)(s+8)}.$ Design a suitable compensator to meet the following specifications.
 - (i) Percentage Peak overshoot = 16% for unit step input.
 - (ii) Steady state error ≤ 0.125 for unit ramp input.
 - b) Explain the PID controllers and its functions in any closed loop control system. (4)

Module IV

- 17 a) Sketch Bode Plot for the system with an open loop transfer function G(s)H(s) = (10) $\frac{1}{s(1+0.02s)(1+0.04s)}$. From Bode plot, determine gain margin and phase margin and assess the stability of the system.
 - b) Define resonant frequency, resonant peak, bandwidth and cut off rate for a (4) standard second order system.

1200EET302012402

OR

- 18 a) Sketch Polar Plot for the given open loop transfer function $G(s)H(s) = \frac{10(s+2)}{s(s+1)(s+3)}$ and determine the gain margin and phase margin
 - b) Define gain margin and phase margin.

Module V

(4)

Investigate the closed loop stability for the system having an open loop transfer (14) function $G(s)H(s) = \frac{1+4s}{s^2(1+s)(1+2s)}$, using Nyquist stability criterion.

OR

A unity feedback system has an open loop transfer function $G(s) = \frac{K}{s(1+2s)}$ (14)

Design a suitable lag compensator so that phase margin is 40^0 and the steady state error for ramp input is less than or equal to 0.2.
