0200MAT204122305

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (R,S) (FT/WP/PT) / (S2 PT) Exam April 2025 (2019 Scheme)

Course Code: MAT204

Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS

Max. Marks: 100

Duration: 3 Hours

ages: 4

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Given that $f(x) = \frac{k}{2^x}$ is a probability mass function of a random variable that	3
	can take values $x = 0,1,2,3$ and 4, Find (a) k (b) $P(X \le 2)$.	
2	The joint PMF of two random variables X and Y is given by	3
	p(x, y) = c(x + y), x = 0,1,2; y = 0,1,2,3. Find c	
3	If X has uniform distribution in $(-a, a)$, find a such that	3
	$P(X \le 1) = P(X > 1).$	
4	The lifetime (in years) of an electronic component is an exponential random	3
	variable with mean 1 year. Find the lifetime L which a typical component is 60%	
	certain to exceed.	
5	Find the power spectral density of the WSS power process with autocorrelation	3
	function $2e^{- \tau } + 4e^{- \tau }$.	
6	Find the mean function of the sine wave random process with random amplitude	3
	defined by $X(t) = Asin(\omega_0 t)$ where ω_0 is a constant and A is a random variable	
	uniformly distributed in (0, 1).	
7	Evaluate $\int_0^{\frac{\pi}{2}} \cos x dx$ using trapezoidal rule in 6 sub intervals.	3
8	Find an approximate root of the equation $x^3 - 2x - 5 = 0$ using Regula Falsi	3
	method.	
9	Using Euler's method, find y at $x = 0.25$, given $y' = 2xy$, $y(0) = 1$, $h =$	3

159

0.25.

10 Write the normal equations for fitting a curve of the form y = a + bx to a given 3 set of data points.

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

7

7

7

7

7

7

11 a) A random variable X has the following probability distribution

x	-2	-1	0	1	2	3
Y	¹ / ₁₀	15k ²	¹ / ₅	2 <i>k</i>	³ / ₁₀	3 <i>k</i>

Find (a) k (b) P(X < 2) (c) P(X - 2 << 2) (d) Mean and variance of X.

b) Derive the mean and variance of Binomial distribution.

- 12 a) In a binomial distribution consisting of 6 independent trials, probabilities of 1 and 2 successes are 0.28336 and .0506 respectively. Find the mean and variance of the distribution.
 - b) Accidents occur at an intersection at a Poisson rate of 2 per day. What is the probability that in January there would be at least 3 days(not necessarily consecutive) without any accidents?

Module -2

13 a) The probability density function of a random variable X is given by $f(x) = \begin{cases} kx^3, & 0 < x < 1\\ 0, & otherwise \end{cases}$ Find (a) $P(\frac{1}{4} < X < \frac{3}{4})$ (b) $P(X > \frac{1}{2})$.

- b) The marks obtained by a batch of students in a certain subject are normally distributed. 10% of students got less than 45 marks while 5% of students got more than 75. Find the percentage of students with score between 45 and 60.
- 14 a) The amount of time that a surveillance camera will run without having to be reset

0200MAT204122305

is a random variable having exponential distribution with mean 50 days. Find the probability that such a camera will (a) have to be reset in less than 20 days (b) not have to be reset in at least 60 days.

7

7

7

b) The joint density function of 2 continuous random variables X and Y is $f(x, y) = \begin{cases} cxy, & 0 < x < 4, \ 1 < y < 5 \end{cases}$

$$(x, y) = \begin{cases} 0, & otherwise \end{cases}$$

- a) Find the value of c.
- b) Find $P(X \ge 3, Y \le 4)$.
- c) Find the marginal densities of X and Y.

Module -3

- 15 a) A random process is defined by X(t) = 2cos (5t + θ) where θ is uniformly
 7 distributed in [0,2π]. Find the mean, autocorrelation and auto-covariance.
 - b) If people arrive at a book stall in accordance with a Poisson process with a mean 7 rate of 3 per minute, find the probability that the interval between 2 consecutive arrivals is (a) more than 1 minute (b) between 1 minute and 2 minutes (c) 4 minutes or less.
- 16 a) A cooling system in a machine fails with mean rate of 1 per week following a 7
 Poisson process. Find the probability that 2 weeks have elapsed since last failure.
 If we have 5 extra cooling systems and the next supply is not due in 10 weeks, find the probability that the machine will not be out of order in the next 10 weeks.
 - b) Consider the random process X(t) = A cos(ωt) + Bsin(ωt) where A and B are independent random variables with zero mean and equal variance. Show that X(t) is WSS.

Module -4

17 a) Solve the equation $xe^x - 2 = 0$ by Regula Falsi method.

b) Find the unique polynomial P₃(x) of degree 3 or less, the graph of which passes 7 through the points (−1,3), (0, −4), (1,5) and (2, −6).

Page 3 of 4

141

18 a) Compare $\int_0^1 \frac{1}{1+x^2}$ by using (i)trapezoidal method (ii)Simpson's method with step size h = 0.25. Compare the results with exact value obtained by actual integration.

7

7

7

 b) Using Newton's divided difference interpolating polynomial evaluate y(8) from the following data.

x	4	5	7	10	11	13
y	48	100	294	900	1210	2028

Module -5

a) Solve the following system of equations using Gauss-Jacobi method starting with 7
 the initial approximation (0,0,0).

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$.

b) Fit a straight line y = ax + b to the following data

Х	1	3	4	6	8	9	11	14
у	1	2	4	4	5	7	8	9

20 a) Use Euler's method to solve
$$\frac{dy}{dx} = x + xy + y$$
, $y(0) = 1$. Compute y at $x = 0.15$ 7
by taking $h = 0.05$.

b) Use Runge-Kutta method of fourth order to find y(0.1) from $\frac{dy}{dx} = \sqrt{x + y}$, y(0)=1 7 taking h = 0.1.

Page 4 of 4

162