1100EET307112401

D

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R, S) / S5 (WP) (R) / S3 (PT) (S,FE) Examination November 2024 (2019 Scher

Course Code: EET 307

Course Name: SYNCHRONOUS AND INDUCTION MACHINES

Max. Marks: 100

Duration: 3 Hours

(GRAPH SHEET NEEDED)

PART A Marks (Answer all questions; each question carries 3 marks) 3 Explain the effect of harmonics in pitch factor and distribution factor. 1 Sketch the phasor diagram of a cylindrical pole type alternator with lagging and 3 2 leading power factor load. 3 X_d and X_q are different for salient pole alternators where as they are same for 3 cylindrical rotor alternators. Comment on the statement Identify the voltage regulation method which is known as the optimistic method 3 4 and explain why it is known so. Enlist the starting methods of synchronous motor and describe any one method. 3 5 Sketch the torque slip characteristics of three phase induction motor and show 3 6 the variation of rotor resistance in the characteristics. 3 Explain the phenomenon of crawling in three phase induction motor 7 Describe the pole-changing method for speed control of the induction motor. 3 8 3 Compare synchronous generator and induction generator. 9 3 10 Illustrate how starting torque is developed in split phase induction motor. PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

11	a)	Explain the advantages of stationary armature over rotating armature types	6
	b)	A 4-pole, 50 Hz star-connected alternator has a flux per pole of 0.12 Wb. It has	8
		4 slots per pole per phase, conductors per slot being 4. If the winding coil span	
		is 150°, calculate open circuit line voltage and open circuit phase voltage.	
12	a)	Derive the emf equation of alternator.	5

12 a) Derive the emf equation of alternator.

Page 1 of 3

1100EET307112401

 b) An 8-pole, 3-phase, 60° spread, double layer winding has 72 coils in 72 slots. The coils are short pitched by two slots. Calculate the winding factor for the fundamental and third harmonic.

Module -2

13 a) A 3-phase, star-connected, 1000 kVA, 11000 V alternator has rated current of 8
 52.5 A. The ac resistance of the winding per phase is 0.45 Ω.
 The test results are given below:
 OC test: Field current =12.5A, Voltage between lines= 411V

SC test: Field current =12.5A, Line current = 52.5A

- Determine the full-load voltage regulation of the alternator at (a) 0.8 pf lagging and (b) 0.8 pf leading.
- b) Explain the slip test of alternator.
- 14
- A 3.5 MVA, Y connected alternator rated at 4160 V at 50 Hz has open circuit 14 characteristics given by the following data:

Field	50	100	150	200	250	300	350	400
current		1					t.	
(A):		8						
Line	1620	3150	4160	4750	5130	5370	5550	5650
EMF								
(V)			5		he .			

A field current of 200 A is found necessary to circulate full load current on short circuit of the alternator. Calculate by (i) Synchronous Impedance method and (ii) Ampere -turn method, the full load voltage regulation at 0.8 pf lagging. Neglect armature resistance.

Module -3

- 15 a) Synchronous motor is not self starting. Justify the statement.
 - b) A 440 V, 50 Hz, 6-pole, 3 phase induction motor draws an input power of 76 kW from the mains. The rotor emf makes 120 complete cycles per minute. Its stator losses are 1 kW and rotor current per phase is 62 A. Calculate (a)speed (b) rotor copper losses (c) rotor resistance per phase (d) torque developed.
- 16 a) Sketch the power angle characteristics of synchronous machine and explain.
 - b) The power input to a 6-pole, 50 Hz, 3-phase induction motor is 700 W at no-load and 10 kW at full-load. The no-load copper losses may be assumed negligible

6

9

6 8

6 8

1100EET307112401

while the full-load stator and rotor copper losses are 295 W and 310 W respectively. Calculate the full-load speed, shaft torque and efficiency of the motor assuming rotational and core losses to be equal.

A BRADIN

5

-

Module -4

17 a) A 30hp, 500 V, 50 Hz, 4 pole, 3 phase mesh connected induction motor has the 14 following data:

(i) No load test: 500 V, 8.3 A, 1500 W

(ii) SC test :100 V, 32 A, 1600 W

(iii) Rotor copper loss at standstill is equal to half of the total copper loss

Sketch the circle diagram and estimate the full load current and power factor.

- 18 a) Elaborate the working of Double cage induction motor with relevant
 9 sketches. Also draw the torque slip characteristics of the Double cage induction motor
 - b) Explain the dynamic braking of the Induction motor.

Module -5

19	a)	Describe with neat figure, the operation of Induction Generator	8
	b)	Why Single phase induction motors are not self-starting?	6
20	a)	Explain with neat sketches about the different types of single-phase induction	14
		motors with their applications.	
