C

1100CET305112401

Reg No.:	Name:	3	THE		d	1	1/2	
APJ Al	BDUL KALAM TECHNOLOGICAL UNIVERSITY	S	37	(EBO)	WOLV CHOW	lake	y .	
B.Tech Degree S5 (R, S) /	S7 (PT) (R,S) / S5 (WP) (R) Examination November 202	24	201	THI	JRUTI	14	1	Tr.

Course Code: CET 305 Course Name: GEOTECHNICAL ENGINEERING - II

		Course Name: GEOTECHNICAL ENGINEERING - II	
Ma	x. M	arks: 100 Duration:	3 Hours
		PART A (Answer all questions; each question carries 3 marks)	Marks
1		State any three differences between Coulomb's and Rankine's earth pressure	3
•		theories.	
2		What are the functions of a foundation?	3
3		What are the assumptions in Terzaghi's bearing capacity theory	3
		A square footing of width 2.00 m is constructed at 1.20 m below the ground level	3
4		in a homogeneous dry sand ($\gamma = 18 \text{ kN/m}^3$, $\varphi = 30^\circ$). Determine the ultimate	3
		bearing capacity of footing against shear failure. Nc = 65, Nq = 50, N γ = 5	
5		What are the different types of settlement which can occur in a foundation?	3
6		What is a floating raft foundation?	3
7		Explain the classification of pile foundations based on installation.	3
8		Briefly explain the problems encountered in well sinking.	3
9		What are the main objectives of site investigation?	3
10		Write IS guidelines for disposition of boreholes for For lightly loaded residential	. 3
		building and For building(s) in a site covering an area of about 0.4 hectares	
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
Ÿ		Module -1	
11	a)	A retaining wall with smooth backfill supports two layered sandy stratum to a	10
		depth of 6 m. The properties of two layers are	
		Top layer: angle of internal friction = 30°, unit weight = 18 kN/m ³	
		Bottom layer angle of internal friction = 35° , unit weight = 19 kN/m^3	
		The top layer is 3 m thick. Draw the pressure diagram for lateral earth pressure.	
		Calculate the magnitude and line of action of resultant of active lateral thrust on	
		the wall using rankine's theory.	

1100CET305112401

	b)	Explain Graphic Solution for Coulomb's Active Earth Pressure for cohesion less	4
		soil with neat figures. No need to write the equations or derivations.	
12	a)	A vertical excavation was made in a clay deposit having unit weight of 22	8
		kN/m ³ . It caved in after the depth of digging just crossed 4m. Taking the angle of	
		internal friction $\varphi = 12^{\circ}$, Calculate the value of cohesion. If the same clay is	
		retained with a retaining wall of 8m high, Calculate i) total active thrust ii) total	
		passive thrust. Assume that the wall yeilds far enough to allow Rankine's	
		deformation and no tension cracks forms.	
	b)	What is a shallow foundation? Sketch any four types of shallow foundations.	6
		Module -2	
13	a)	A circular footing of diameter 1.6 m, located at a depth of 1.2 m in a cohesionless	9
		soil layer with an average unit weight of 20 kN/m ³ and angle of internal friction	
		of 20°. The corresponding bearing capacity factors are given below Nc = 18,	
		$Nq=7$, $N\gamma = 5$. The FoS is given as 3. Find the net safe bearing capacity when i)	
		Water table is at a depth of 5 m from ground level.	
		ii) What will be the percentage reduction in the net safe bearing capacity value if	
		the water table rises to the ground surface? Assume the submerged unit weight as	
		10 kN/m^3 .	
	b)	Explain any five factors affecting the bearing capacity.	5
14	a)	A strip footing is to be constructed on deep deposit of sand having an angle of	8
		internal friction of 32° and cohesion intercept 5 kN/m ² at depth of 1m below	
		ground level. The ground water table is at depth of 1m below ground level. Dry	
		unit weight of sand is 16 kN/m³ and saturated unit weight is 20 kN/m³. The	
		loading on the foundation is 220 kN/m length. The factor of safety is 2. Bearing	
		capacity factors are Nc = 35, Nq=23, N γ = 30. Assume the unit weight of water	
¥.		as 10 kN/m ³ . Determine the width of footing using Terzhaghi's theory	
	b)	What type of shear failure can be expected for footings at shallow depth, if the	6
		subsoil consists of dense homogeneous coarse-grained soil? Draw the typical	
		pressure verses settlement curve for general and local shear failures.	
		Module -3	
15	a)	Design a combined footing for two columns with loads 3000kN & 5000kN.The	10

centre to centre distance between two columns is 4.0 m. Column are having sizes $0.6 \text{ m} \times 0.6 \text{ m}$. There is a restriction of projection of footing on both column side

1100CET305112401

		by 0.2 m from the face of the columns. Take allowable soil pressure as 200 kN/m ² .	
	b)		4
	-,	foundations?	7
16	a)		7
		Under what circumstances raft foundations are preferred?	
	b)	·	7
		$E = 6 \times 104 \text{kN/m}^2$ and $\mu = 0.50$. Determine the immediate settlement of the	
		footing at the centre, assuming it to be (a) a flexible footing and (b) a rigid	
		footing	
		Module -4	
17	a)	A precast concrete pile of size 45 x 45cm is driven into stiff clay. The unconfined	7
		compressive strength of clay is 200kN/m ² .Determine the length of pile required	
		to carry a safe working load of 400kN with a F.S 2.5. Take adhesion factor as	
		0.55.	
	b)	Suggest any 3 methods for rectification of tilts of well foundations. Draw neat	7
		sketches to illustrate the same.	
18	a)	A square pile group of 25 piles extends between depth 2m and 12m in a deposit	10
		of 20m thick stiff clay overlying rock. The piles are 0.5m in diameter and are	
		spaced at 1m centre to centre in the group. The undrained shear strength of the	
		clay at the pile base level is 180kPa and average undrained shear strength over	
•		the depth of pile 110kPa. The adhesion coefficient is 0.45. Estimate the capacity	
		of the pile group considering an overall $F.S = 3$.	
	b)	What is negative skin friction? What is its effect on the pile?	4
		Module -5	
19	. a)	Explain in detail the procedure for standard penetration test. What are the	.10
		corrections to be applied to N-value?	
	b)	An SPT was conducted in a dense sand deposit at a depth of 22m and a value of	4
		48 was observed for N. The density of sand is 15 kN/m ³ . What is the value of N	
		corrected for overburden pressure?	
20	a)	Explain different types of soil samplers to collect soil samples from the ground.	8
	b)	Describe various salient features of a soil investigation report	6
