1100AMT305112403

Course Code: AMT 305

Course Name: INTRODUCTION TO MACHINE LEARNING

Max. Marks: 100 Duration: 3 Hours

PART A

		(Answer all questions; each question carries 3 marks)	Marks						
1		Briefly describe the concept on Model selection and Generalization.	3						
2		Discuss any 4 examples of Machine learning Applications.	3						
3		Compare Forward selection and Backward selection.	3						
4		Discuss the issues involved in decision tree learning.	3						
5		What are the different methods for measuring classifier performance.							
6		With suitable equations explain any two types of activation functions used in neural networks.	3						
7		Describe the significance of kernel function in SVM. List any two kernel functions.	3						
8		Explain the general MLE method for estimating the parameters of a probability distribution.	3						
9		Describe boosting. What is the relation between Boosting and Ensemble learning?	3						
10		Explain steps involved in Expectation Maximization algorithm.	3						
V.		PART-B							
	(Answer one full question from each module, each question carries 14 marks)								
Module -1									
11	a)	Differentiate between supervised and unsupervised learning. Explain with suitable example.	7						
	b)	Define VC dimension. How VC dimension is related with number of training examples used for learning?	7						

1100AMT305112403

- 12 a) Explain the concept of PAC learning. Derive an expression for PAC learning in such a way that the selected function will have low generalized error.
 - b) Define the terms Hypothesis space and Version space. Illustrate with an 4 example.

Module -2

- 13 a) Illustrate the idea of PCA for a two-dimensional data using suitable diagram.
- 14 a) Given all the previous patients I've seen (below are their symptoms and diagnosis.

chills	runny nose	headache	fever	flu?
Y	N	Mild	Y	N
Y	Y	No	N	Y
Y	N	Strong	Y	Y
N	Y	Mild	Y	Y
N	N	No	N	N
N	Y	Strong	Y	Y
N	Y	Strong	N	N
Y	Y	Mild	Y	Y

Do I believe that a patient with the following symptoms has the flu?

chills	runny	nose	headache	fever	flu?
Y	ľ	J	Mild	Υ	?
	***************************************	***************************************			

b) State ID3 algorithm, used for decision tree classification.

6

8

Module -3

- 15 a) What are ROC space and ROC curve in machine learning? In ROC space which point corresponds to perfect prediction, always positive prediction and always negative prediction? Why?
 - b) Briefly explain one way in which using TanH instead of sigmoid activations 4 makes optimization easier?
- Assume that the neurons have the sigmoid activation function to perform forward and backward pass on the network. And also assume that the actual output of y is 0.5 and the learning rate is 1. Now perform the back propagation using back propagation algorithm.

1100AMT305112403

Module -4

- 17 a) Compute the maximum likelihood estimate for the parameter λ in the Poisson 8 distribution whose probability function is $f(x) = f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$
 - b) Explain the general MLE method for estimating the parameters of a probability distribution.
- 18 a) Describe the significance of soft margin hyper plane and optimal separating hyper plane and explain how they are computed.

Module -5

- 19 a) Describe EM algorithm for Gaussian Mixtures.
 - b) Illustrate the strength and weakness of the K-means algorithm.
- 20 a) Use K-means clustering to cluster the following data into two groups. Assume cluster centroid are m₁=2 and m₂= 4. The distance function used is Euclidian distance {2, 4, 10,12,3,20,30,11,25}.
 - b) Write a note on similarity measures used in unsupervised learning.