1000AIT401112402

Reg No.:____

Name:

APJ ABDUL KAĻAM TECHNOLOGICAL UNIVERSIT

Seventh Semester B.Tech Degree (R, S) Examination November 2024 (20)

Course Code: AIT401

Course Name: FOUNDATIONS OF DEEP LEARNING

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions, each carries 3 marks.	Marks
1	What is deep learning, and why is it considered a breakthrough in artificial	(3)
	intelligence?	
2	Calculate the output Y of a three-input neuron with bias. The input feature vector	(3)
	is $(x1,x2,x3) = (0.8,0.6,0.2)$ and weight values are $[w1,w2,w3] = [0.2,0.1,-0.3]$	
	and Bias is 0.25. Use Binary Sigmoid as the activation function.	
3	Discuss in detail how early stopping acts as a Regularizar.	(3)
4	List any three methods to prevent overfitting in neural networks	(3)
5	Assume an input volume of dimension $64 \ge 64 \ge 3$. What are the dimensions of	(3)
	the resulting volume after convolving a 5 x 5 kernel with zero padding, stride of	
	1 and 2 filters?	
6	How can transfer learning be used to improve the performance of a convolutional	(3)
	neural network for image classification tasks?	
7	What is the main difference between a convolutional neural network (CNN) and	(3)
	a recurrent neural network (RNN)?	
8	Differentiate between LSTM and GRU	(3)
9	What is an autoencoder? Give one application of an autoencoder.	(3)
10	Where is Boltzmann machines used?	(3)
1	PART B	

Answer any one full question from each module, each carries 14 marks.

Module I

11	a)	Explain the backpropagation algorithm for neural network training.	(8)
	b)	Discuss bias variance trade-off in neural networks.	(6)

OR

1000AIT401112402

14 g			(9)
12	a)	Describe various activation functions used in neural networks and its derivatives	(8)
	b)	Discuss the structure and functionality of a Perceptron.	(6)
		Module II	
13	a)	Explain the different techniques to improve model performance and generalization	(10)
	b)	Explain the vanishing and exploding gradient problem	(4)
		OR	
14	a)	Enumerate how early stopping, dropout, and batch normalization can be used to	(8)
		improve the performance of a deep neural network.	
2	b)	Distinguish between Momentum Optimizer, RMSProp, and Adam, in the context	(6)
		of deep neural network training?	
		Module III	
15	a)	Sketch and explain Convolutional Neural Network architecture, and expand each	(10)
		stage in detail.	
	b)	Describe common pooling methods like max-pooling and average pooling.	(4)
		Discuss how pooling layers contribute to reducing spatial dimensions while	
		preserving essential features.	
		OR	
16	a)	Explain the following convolution functions	(8)
		a) kernel flipping b) down sampling c) strides d) zero padding.	
	b)	Take one pre-trained CNN architecture (e.g., VGGNet-19) and describe its key	(6)
		features, use of convolutional layers, and pooling layers. Explain the advantages	
		of using pre-trained models as a starting point for new projects.	
		Module IV	
17	'a)	Explain the general structure of LSTM and Illustrate how LSTM decides what to	(9)
		remember and what to forget?	
	b)	Discuss different ways to make a Recurrent Neural Network(RNN) a deep RNN	(5)
,		with the help of diagrams.	
		OR	
18	3 a)	Illustrate the concept of language modelling using an RNN. Describe the	(9)
		structure of an RNN-based language model and how it generates probabilistic	
		predictions for sequences of words.	
	b) Discuss the key considerations in designing an RNN architecture.	(5)
		Page 2 of 5	

.

.

1000AIT401112402

Module V

19	a)	Describe the structure and working principles of a variational autoencoder	(7)
		(VAE).	
	b)	Define Deep Belief Networks (DBNs) and their significance in the field of deep	(7)
		learning	

OR

20	a)	Compare Boltzmann Machine with Deep Belief Network	(7)
	b)	Explain Generative Adversarial Networks using a suitable diagram	(7)
