1100RAT301112401

Reg No.:_

Name:

APJ ABDUL KALĄM TECHNOLOGICAL UNIVERSIT

Fifth Semester B.Tech Degree (R, S) Examination November 2024 (2019 Scheme

Course Code: RAT 301 Course Name: INTRODUCTION TO ROBOTICS

Max. Marks: 100

Duration: 3 Hours

Ser an

PART A

	10	(Answer all questions; each question carries 3 marks)	Marks
1		Explain degrees of freedom of robots with an example.	3
2		Differentiate between servo and non-servo control robots.	3
3		Write the three rotation matrixes about x, y, z axis.	3
4		Distinguish between forward and inverse kinematics.	3
5		Explain the principle behind cubic polynomial trajectory planning.	3
6		Compare joint space and Cartesian space trajectory planning.	3
7		Write down the equations for force and torque in terms of the Lagrangian.	3
8		Draw the schematic diagram of a robot control system.	3
9		Summarise any two non-industrial applications of robots.	3
10		Explain the working principle of any one type of accelerometer with a diagram.	3
		PART B (Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Describe with a diagram robot anatomy in detail.	10
	b)	Explain with a diagram a gripper that can be used to handle large flat objects of	4
¢.		any type of material.	•
		OR	

		Module -2	
	b)	Explain the advantages and disadvantages of electric drives.	4
12	a)	Describe mechanical grippers and magnetic grippers with neat diagrams.	10

a) Obtain the D-H parameter table and arm equation for a 2-link planar robot given in 10 the figure below.

b) Explain the screw transformation with necessary equations.

OR

8

-

14 a) A point $p(7,3,1)^T$ is attached to a mobile frame Fnoa and is subjected to the following transformations. Find the coordinates of the point relative to the reference frame.

1. Rotation of 90° about the z-axis,

2. Followed by a rotation of 90° about the y-axis,

3. Followed by a translation of [4, -3, 7].

b) Explain the general properties of solutions to the inverse kinematics problem of a 6 manipulator.

Module -3

- 15 a) The second joint of a SCARA robot must move from 20° to 60° in 5 sec. Find the
 9 coefficients of the cubic polynomial to interpolate a smooth trajectory. Also obtain the position, velocity, and acceleration profiles.
 - b) Summarize with a neat diagram the principle of artificial potential field method in 5 robot navigation with obstacle avoidance.

OR

		22407	
16	a)	Describe the A* algorithm with a suitable example.	9
	b)	Explain with a diagram trajectory planning using via points.	5
		Module -4	
17	a)	Develop the dynamic model of a 2 DOF polar arm shown in the figure below.	10

1100RAT301112401

b) Draw the block diagram of a PD Gravity Controller.

OR

4

6

-

- 18 a) Explain the working of a single axis PID controller with necessary block diagrams.
 8 Also derive its closed loop transfer function.
 - b) Derive the dynamic equation of a single degree of freedom system given in the 6 figure below

Module -5

- 19 a) Summarize the application of any three types of sensors in robotics.
 b) Derive the forward kinematic model of a differential drive robot.
 8
 0R
 20 a) Explain the application of robots in material handling and welding with specification of the robots used for these applications.
 - b) Explain the terms dynamic range, resolution and linearity with reference to sensors.
