Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B. Tech Degree (S, FE) Examination June 2024 (2019 Scheme)

Course Code: MRT205

Course Name: MECHANICS OF SOLIDS

Max. Marks: 100 Duration: 3 Hours

PART A

	Answer all questions. Each question carries 3 marks	Mark
1	Define the term 'state of stress at a point' in terms of rectangular co-ordinate system	(3)
2	Write a note on Mohr's circle of stresses	(3)
3	Explain generalised Hooke's law	(3)
4	Define the terms young's modulus and poisson's ratio	(3)
5	Define torsion,torsional rigidity and polar moment of inertia	(3)
6	List any three important assumptions in the theory of torsion	(3)
7	Discuss about castigliano's first theorem	(3)
8	Define the terms resilience, proof resilience, modulus of resilience	(3)
9	Discuss saint-venant's theory of failure	(3)
10	Define the terms column, strut and crippling load	(3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

A rectangular steel bar having a cross-section 2 cm x 3 cm is subjected to a tensile (14) force of 6000 N (612.2 kgf). If the axes are chosen as shown in fig shown below, determine the normal and shear stresses on a plane whose normal has the following direction cosines:

0800MRT205122001

(1)
$$n_x = n_y = \frac{1}{\sqrt{2}}$$
, $n_z = 0$
(11) $n_x = 0$, $n_y = n_z = \frac{1}{\sqrt{2}}$
(111) $n_x = n_y = n_x = \frac{1}{\sqrt{3}}$

(7)

(7)

(7)

- 12 a) Explain the procedure for constructing Mohr's circle with an example.
 - b) At a point P, the rectangular stress components are

$$\sigma_x = 1, \sigma_y = -2, \sigma_z = 4, \tau_{xy} = 2, \tau_{yz} = -3, \text{ and } \tau_{xz} = 1$$

all in units of kPa. Find the principal stresses and check for invariance.

Module 2

- 13 A steel rod of length 6.0 m and diameter 20 mm is fixed between two rigid supports. (14)

 Determine the stress in the rod when the temperature increases by 80°C. If
 - a) the ends do not yield
 - b) the ends yield by 1 mm

(Take E = $2.0 \times 10^6 \text{ kg} / \text{cm}^2 \text{ and } \alpha = 12 \times 10^{-6} \text{ per}^{\circ}\text{C}$)

- a)In a tension test on a 25mm diameter rod it is observed that an extension of 0.25mm (7) occurs over a gauge length of 300mm and correspondingly the diameter decreases by 0.00595 mm when a load of 100kN is applied .Determine the three modulus of elasticity and poisson's ratio.
 - b) A steel flat 150mm wide 15mm thick and 6m long carries a pull of 270kN. Find the extension in length and contraction in width and thickness under the pull given poisson's ratio = 0.3 and E = 2×10^4 kN/mm² Also calculate the change in volume?

Module 3

Determine the diameter of a solid steel shaft which will transmit 90 kW at 160 rpm. (14)

0800MRT205122001

Also find the length of the shaft if the twist must not exceed 1° over the entire length. The maximum shear stress is limited to 60 N/mm^2 . Take the value of modulus of rigidity = $8 \times 10^4 \text{ N/mm}^2$.

16 a) Draw Shear force diagram and bending moment diagram for the beam shown in (9) figure

b) Compare the stiffness of a hollow shaft of diameter ratio 0.75 to that of a solid shaft by considering the permissible shear stress. Both the shafts are of same material, of same length and weight. (5)

Stiffness of hollow shaft is [1-(0.75)⁴] times stiffer than solid shaft

Module 4

17 a) State and prove reciprocal theorem

(8)

(6)

b) A tensile load 80kN is applied suddenly to a circular bar of 50mm diameter and 4m long. Determine i) maximum instantaneous stress induced ii) instantaneous elongation in the bar iii) strain energy absorbed in the bar $E = 2x \cdot 10^5 \text{N/mm}^2$

(14)

A beam of length 6 m is simply supported at its ends and carries two point loads of 48 kN and 40 kN at a distance of 1m and 3m respectively from the left support.(Using Macaulay's Method)

Find:

- (i) Deflection under each load.
- (ii) Maximum deflection
- (iii) The point at which maximum deflection occurs. Given $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 85 \times 10^6 \text{ mm}^4$.

Module 5

- 19a Find the Eulers load for a hollow cylindrical steel column of 40mm external diameter (9) and 3mm thick Take its length of the column as 2.5m and hinged at its both ends Take E=200Gpa . also determine the crippling load by Rankine's formula using constants Fd = 330Mpa and $\alpha = 1/7500$
- 19b Explain the limitation of Euler's formula

(5)

0800MRT205122001

20	A solid round bar 3m long and 5cm in diameter is used as a strut, determine the	
	crippling load. Take E=2x10 ^s N/mm ² .	
	a) One end hinged and other end fixed	(5)
	b) One end is fixed and other end is free.	(5)
	a) Both the ends are fixed	(4)