08000EET201122301 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S,FE)/S1 (PT)(S) June 2024 (2019 Scheme)/S3 (WP)(R) December 2023 Examination

Course Code: EET201 Course Name: CIRCUITS AND NETWORKS

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions. Each question carries 3 marks

Marks

(3)

(3)

Using superposition, find Vo in the circuit of Fig.

1

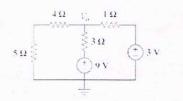


Fig.1

Find the Norton equivalent of the circuit in Fig.2 as seen by looking into terminals a and b.

Obtain the expression for current in the circuit shown in fig.3 for t>0, assume no initial charge across capacitor. Use Laplace transform method. V_s is a constant DC voltage

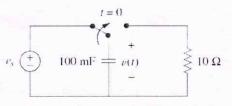
Fig.2 (3)

source

Fig.3

- 4 Explain how to obtain s-domine equivalent of Resistance, inductance and capacitance
- 5 Explain the use of dot convention in the analysis of coupled circuits.

(3)


(3)

(3)

(3)

Find v(t), for t>0 in the circuit of Fig.5 $V_{7} = 20 \text{ V}$

 $V_S = 20 \ V.$

7 Derive the expression for resonance frequency in a series RLC circuit connected to a variable frequency AC source

Fig.5

8 An unbalanced Y-load $Z_A = 15 \Omega$, $Z_B = 10 + j5 \Omega$, $Z_C = 6 - j8 \Omega$. is connected to a 100 V, 3phase, 4wire, ACB sequence system. Calculate the line currents

08000EET201122301

and the neutral current. 9 Obtain T parameters in terms of Z parameters (3) 10 Show that the overall Y-parameter matrix of two parallel connected 2-port (3) networks is the sum of the Y-parameter matrices of the individual networks. PART B Answer any one full question from each module. Each question carries 14 marks Module 1 10.12 (10)11(a) For the circuit shown in Fig.6, find the node 21 voltages v₁ and v₂ 4 12 Fig.6 (b) Use source transformation to reduce the circuit in (4) Fig.7 to a single voltage source in series with a 10 0 2(15) single resistor. 123 Fig.7 12 Use mesh analysis to 80 Ω j60 Ω 20 Ω evaluate Io in the circuit in fig.8 (14) $-j40 \Omega$ -140Ω (±) 60 /-30° V 100/120° V Fig.8 Module 2 13 In the circuit shown in Fig.9, the switch S has (14)been in position 1 for a long period of time. Find the complete expression for the current after throwing the switch S to position 2 Fig.9 14 Find i(t) for t > 0 in the circuit of Fig. 10 (14)10 Ω 60 \, \O 1 mF 40 Ω S 20 V (+ Fig.10 2.5 H Module 3 15 Initially the circuit is in steady state and (14)the switch is closed at time t=0.Find the 10 0 output voltage vo(t) for t>0 in the circuit 1 H 💆 10 mF

Page 2of 3

Fig.11

of fig.11

Calculate the phasor currents

I₁ and I₂ in the circuit of
Fig.12

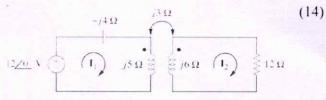


Fig.12

Module 4

17 A star connected load of Z_a =80 + j50 Ω , Z_b =20 + j30 Ω , Z_c =60 - j40 Ω is connected to a 110V, 3 phase 3 wire system. Determine the line currents.

18(a) Find the phase currents and line currents in the circuit in fig.14. Z_1 =8+j6 Ω , Z_2 =4.2-j2.3 Ω , Z_3 =10 Ω

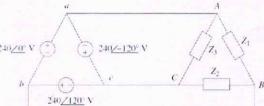
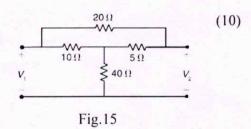
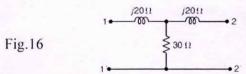



Fig.14

(b) Derive the expression for half power frequencies in case of a series RLC (6) circuit

Module 5

19(a) Calculate the Y parameters of the network in fig.15 considering as two networks connected in parallel


(b) Express T parameters in terms of Y parameters

(4)

20(a) Calculate the T parameters of the network shown in fig.16

(8)

(9)

(b) Drive the condition for reciprocity and symmetry of two port network in terms of h parameters (6)