Reg No.:

b

08000ECT201122201	Pages: 2
Name:	ISE SOUND

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B. Tech Degree S3 (S,FE)/S1 (PT)(S) June 2024 (2019 Scheme)/S3 (WP)(R) December 202

Course Code: ECT201 Course Name: SOLID STATE DEVICES

Max. Marks: 100 Duration: 3 Hours PART A Answer all questions. Each question carries 3 marks Marks Explain the indirect recombination mechanism in semiconductors. (3) 1 2 What are Quasi-Fermi levels? (3)3 How the mobility of carriers varies with temperature? (3) Derive Einstein relations. 4 (3) An abrupt p-n junction made of Silicon has N_A=10¹⁸ cm⁻³ on the p-side and 5 (3)N_D=5x10¹⁵cm⁻³ on the n-side. At 300K, calculate built-in potential using its expression. Describe the rectifying behaviour of a metal-n-type Semiconductor contact. (3) 6 Draw the equilibrium energy band diagram of an ideal MOS capacitor. 7 (3) Derive the expression for threshold voltage of a MOS capacitor. (3) 9 Compare constant voltage scaling and constant field scaling (3) 10 Explain DIBL. (3) PART B Answer any one full question from each module. Each question carries 14 marks Module 1 11a Derive the expression for electron, hole and intrinsic concentrations at (8) equilibrium in terms of effective density of states. A Silicon sample is doped with 10^{17} As atoms/cm³. What is the equilibrium hole concentration p₀ at 300K? Where is E_f relative to E_i? Draw the energy band diagram (6)12a Draw and explain Fermi-Dirac Distribution function and apply it to (10)semiconductors. Also draw the plot of FDD and energy band diagram.

(4)

Explain the different excess carrier generation mechanisms.

08000ECT201122201

Module 2

13a	Derive the expression for diffusion current density in a semiconductor.	(9)
b	Explain Hall effect.	(5)
14a	Derive Continuity Equations and hence derive the steady state Diffusion	(5) (10)
	equations for electrons and holes.	
b	An n-type silicon bar 0.1cm long and 100µm² in cross sectional area has a	(4)
	majority carrier concentration of $5x10^{20}\text{cm}^{-3}$ and electron mobility $0.13\text{m}^2/\text{V}\text{s}$ at	
	300K. What is the resistance of the bar?	
	Module 3	
15a	Derive ideal diode equation. List out the various approximations used.	(10)
b	An abrupt Silicon p-n junction has $N_A=10^{17} cm^{-3}$ on the p-side and $N_D=10^{15} cm^{-3}$ on the n-side. The area of cross-section of the diode is $10^{-4} cm^2$. The relative permittivity of Si is 11.8. Determine the following at 300K.	(4)
	 (a) the built-in voltage (b) the depletion layer width W₀,Xp₀,Xn₀ (c) the maximum electric field 	
16	With the aid of energy band diagram, explain how a metal-N type junction	(14)
	functions as a rectifying and ohmic contact.	
	Module 4	
17a	Starting from the fundamentals, derive the expression for drain current of a	(10)
	MOSFET in its two regions of operation.	
b	Draw the transfer characteristics of an n-channel enhancement MOSFET in	(4)
	linear and saturation regions.	
18a	With the help of energy band diagrams, explain the three regions of operation of	(8)
	a MOS capacitor	
b	A Silicon MOS system with p-substrate having NA=10 ¹⁵ cm ⁻³ and oxide thickness 100A ⁰ is at the onset of strong inversion. Determine	(6)
	(a) width of the depletion layer.	
	(b) the charge density in the depletion layer.	
	(c) the threshold voltage.	
	Given $\mathcal{E}_{rox}=3.9, \mathcal{E}_{rsi}=11.8$.	
	Module 5	
19	Summarize the various short-channel effects in MOSFET.	(14)
20	Draw and explain the structure and operation of FinFET. List out its advantages.	(14)