Reg No.:

06000EE311122005me:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S5 (PT) (S,FE) Examination June 2024 (2015 Scheme

Course Code: EE311

		Course Cour. EESTI	-	
		Course Name: ELECTRICAL DRIVES & CONTROL FOR AUTOMATION		
Max. Marks: 100 Durat			on: 3 Hours	
		PART A		
		Answer any three full questions, each carries 10 marks.	Marks	
1	a)	What are the applications of dc generator?	(2)	
	b)	Give the classification of dc generators based on their field winding excitation with diagrams	(4)	
	c)	Derive an expression for the e.m.f. generated in a dc generator.	(4)	
2	a)	Draw the different characteristics of a dc shunt generator and name them.	(3)	
	b)	What are the effects of armature reaction in dc generator?	(3)	
	c)	A 6 pole dc shunt generator with 780 wave connected armature conductors and	(4)	
		running at 500rpm supplies a load of 12.5 ohms resistance at a terminal voltage		
		of 250 VThe armature resistance is 0.25 ohms and field resistance is 250		
		ohms. Find the following i) Armature current ii) induced EMF iii) Flux per pole.		
3	a)	With the help of a neat sketch explain the load test of a dc shunt motor.	(3)	
	b)	With the help of block diagram explain the power stages of dc motor	(2)	
	c)	A 220 V dc shunt motor carries an armature current of 40 A and runs at a speed	(5)	
		of 500 rpm. The armature resistance is 0.25 Ω . If the flux is reduced by 5% and		
		the torque remains the same, find the new speed of the motor.		
4	a)	With the help of a neat diagram, explain the electrical and mechanical characteristics of dc shunt motor.	(5)	
	b)	Explain the different losses in a d.c. machine and derive the condition for maximum efficiency.	(5)	

06000EE311122005

PART B Answer any three full questions, each carries 10 marks.

5	a)	Derive the EMF equation of a transformer	(4)
,		Explain the vector diagram of transformer under no load	
,	b)		(6)
6	a)	Write short notes on current transformer and potential transformer.	(5)
	b)	The maximum flux density in the core of a 240/3000V,50 Hz single phase	(5)
		transformer is 1.3Wb/m2. If the EMF per turn is 8Volt. Determine i) primary	
		and secondary turns ii)area of the core	
7	a)	Explain the torque slip characteristics of a three-phase induction motor with	(4)
		neat diagram.	
	b)	Explain how rotating magnetic field is produced in a three-phase induction	(6)
		motor with the help of a neat diagram.	
8	a)	Explain the working principle of three phase induction motor with neat	(6)
		diagrams	
	b)	Explain with the help of neat diagram the working of any two methods of	(4)
		starting a 3-phase induction motor	
		PART C	
		Answer any four full questions, each carries 10 marks.	
9	a)	What are the methods of starting a single-phase induction motor?	(6)
	b)	Draw and explain V curves of a synchronous motor.	(4)
10	a)	How voltage regulation of an alternator is determined by EMF method. Explain	(6)
	b)	Explain the working of a universal motor with the help of its diagram.	(4)
11	a)	Considering pitch and distribution factors, derive emf equation of an alternator.	(6)
	b)	Explain the principle of synchronous condenser and give its applications.	(4)
12	a)	Explain the working of variable reluctance stepper motor with neat diagram.	(6)
	b)	Draw and explain the torque speed characteristics of a stepper motor.	(4)
13	a)	Explain the working of Hybrid stepper motor with the help of a neat diagram.	(5)
	b)	Explain programmable logic controllers with neat diagram	(5)
14	a)	Explain the working of a digital controller.	(4)
	b)	Write short notes on axis controller and machine tool controller.	(6)
