Marks

Reg No.: Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S5 (PT) (S,FE) Examination June 2024 (2015)

Course Code: EE307 Course Name: SIGNAL AND SYSTEMS

Max. Marks: 100 Duration: 3 Hours

PART A

	Answer all questions, each carries5 marks.	Mark
1	Check for linearity and time variance of $\frac{dy(t)}{dt} + 4ty(t) = x(t)$	(5)
2	Obtain the transfer function for:	(5)

$$\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 6y(t) = 3\frac{d^2x(t)}{dt} + 7\frac{dx(t)}{dt} + 5x(t)$$

- 3 State and prove linearity and time shifting property of Fourier transform (5)
- Explain sampling process and sampling theorem 4 (5)
- 5 Find the Z transform and ROC of the signal x(n) = n u(n)(5)
- 6 Find the initial value of $x(z) = \frac{1}{1-z^{-2}}$ (5)
- 7 State any 5 properties of Discrete Fourier series. (5)
- 8 Explain the properties of non-linear systems (5)

PART B

Answer any two full questions, each carries 10 marks.

- 9 Sketch the following signals (7)
 - 3r(t-1) (ii) r(-0.5t+2)(i)
 - Explain any three types of signals with example (3)
- (5)10 Find the unilateral Laplace transform of $x(t) = \cos \omega t$
 - Plot the pole zero diagram of the $\frac{s+2}{s^2+2s+2}$ (5)
- Define causality and time invariance of a system. Check for causality and time 11 (10)invariance of
 - $y(t) = x^2(t)$ (i)
 - y(t) = |x(t)|(ii)

PART C

Answer any two full questions, each carries 10 marks.

Obtain the trigonometric Fourier series coefficient of the periodic function shown (10) below:

- 13 a) Explain aliasing. (5)
 - b) Find Nyquist rate and Nyquist interval for the signal $X(t) = 1/2\pi \cos(3000\pi t) + \cos(5000\pi t)$ (5)
- 14 a) Differentiate between Zero order hold and first order hold system (5)
 - b) Determine the response of the LTI system whose input x(n) and impulse response
 h (n) are given by x (n) = {1,2,3,1} and h (n) = {1,2,1,-1} using matrix method
 ↑

PART D

Answer any two full questions, each carries 10 marks.

- 15 a) Write short note on random signals and random process (5)
 - b) Find the initial value and final value of $\frac{1}{1+2z^{-1}-3z^{-2}}$ (5)
- Determine the Z transform and ROC of (10)
 - a) $x(n) = 0.8^n u(-n-1)$ b) $x(n) = 0.5^n u(n)$
- Determine the Fourier series representation of the discrete time signal and sketch the frequency spectrum (10)

$$x(n) = \{\dots, 0, \frac{1}{2}, 1, \frac{3}{4}, 0, -\frac{3}{4}, -1, -\frac{1}{2}\dots\}$$
