N.	ama	••••••			
746	CLILLO	000000000	000000	****	
			-	ALL STREET	
		-		-	\

Maximum: 100 Marks

Reg. No...

FOURTH SEMESTER B.TECH. (ENGINEERING) DEGRÉE EXAMINATION, DECEMBER 2010

ME/AM 04 406—FLUID MACHINERY

Time: Three Hours

Part A

Answer all questions.

- 1. (a) Define dimensional homogenity.
 - (b) State Buckingham's π-theorem.
 - (c) Define Cavitation.
 - (d) Differentiate between the Turbines and Pumps.
 - (e) What factors decide wheather Kaplan, Francis, or a Pelton type turbine would be used in a hydroelectric project?
 - (f) List the main parts of a centrifugal pump.
 - (g) Differentiate between Volute casing and Vortex casing for the centrifugal pump.
 - (h) What are the Cavitation causes?

Part B

2. (a) A turbine is to operate under a head of 30 m. 250 r.p.m. The discharge is 10.5 m³/s. If the efficiency is 85 % find out (i) power generated; (ii) specific speed of the turbine; (iii) performance under the head of 20 m.

(15 marks)

Or

(b) A model $\frac{1}{5}$ of an actual turbine develops 2 kW at 400 r.p.m. under a head of 3 m. Find the specific speed of the runner. Also calculate the speed, power and discharge of prototype when working under a head of 20 m. Assume $\eta_0 = 0.85$ for both model and prototype.

(15 marks)

3. (a) Show that the resistance "F" to the motion of a sphere of diameter "D" moving with a uniform velocity "V" through a real fluid of density " ρ " and viscosity " μ " is given by $F = \rho \ D^2 V^2 f \left(\frac{\mu}{V D \rho} \right)$. Use this result to explain how dimensional analysis results in the simplification of experimental data.

(15 marks)

(b) Show by dimensional analysis, that the power "P" developed by a hydraulic turbine is given by $P = \rho \ N^3 D^5 f \left(\frac{N^2 D^2}{gH} \right)$, where ρ is the mass density, "N" is the rotational speed, "D" is the diameter of runner, "H" is the working head and "g" is the gravitational acceleration.

(15 marks)

4. (a) A centrifugal pump running at 1440 r.p.m. delivers water against total head uf 30 m. The outlet vane angle is 45°. The outer diameter of the impeller is 50 cm. and vane width is 5 cm. Find the discharge of the pump assuming manometric efficiency = 0.75.

(15 marks)

Or

(b) A model is designed whose power is 20 kW, total head is 10 m. when running at 1,000 r.p.m. for predicting the performance of a prototype. The size of the model is \(\frac{1}{10}\) of prototype which is to work against 15 m. Find the speed and power of the prototype. Also find the flow rate in both.

(15 marks)

- 5. (a) Explain the working of a double acting pump with the help of a neat sketch. (15 marks)
 - (b) What is air-vessel? Describe the functions of air vessel with the help of neat diagram.

(15 marks)