Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S3 (PT) (S) Examination June 2024 (2019 Scheme)

Course Code: CET 307 Course Name: HYDROLOGY & WATER RESOURCES ENGINEERING

Ma	x. M	tion: 3 Hours										
		PART A (Answer all questions; each question carries 3 marks)	Marks									
1		Explain the various types of precipitation.	3									
2		Define infiltration indices.	3									
3		Describe the methods of base flow separation.										
4	Enlist the various factors affecting runoff in a catchment.											
5		Differentiate flow and lift irrigation.	3									
6		Enumerate the various methods for improving duty.										
7		What are the criteria to be considered while selecting the location for a stream g	gauge? 3									
8		Illustrate the various zones of a reservoir.	3									
9		Define porosity, specific yield and transmissibility.	3									
10		State Darcy's Law. List down the assumptions.	3									
		PART B (Answer one full question from each module, each question carries 14 mar	·ks)									
		Module -1										
11	a)	Illustrate the working of a siphon type recording rain gauge.	4									
	b)	The rainfall data observed from various rain gauge stations in a catchment is	shown 10									
		in the Figure. Compute the average precipitation using Theissen Polygon met	hod.									
		6 km										

1100CET307122102

12 a) Explain the method of measurement of infiltration. Derive the Horton's model and discuss how the data is fit in the Horton's model.

7

7

8

6

8

5

b) Obtain the φ-index of a storm that has occurred for a duration of seven hours in a basin of catchment area of 2200 km² and the runoff is 43.7 Mm³. The rainfall intensity in mm/hr at hourly interval is given in the table.

Time (hrs)	7	8	9	10	11	12
Rainfall Intensity (mm/hr)	8	15	28	17	12	5

Module -2

Estimate the ordinated of a flood hydrograph from a 6 hr storm having 3 events of rainfall with depth of 2.8 cm, 4.3 cm and 1.6 cm successively each during 2 hours.

Assume an initial loss as 1 mm, infiltration as 1.5 mm/hr and base flow as 15 m³/s.

Time (hrs)	0	2	4	5	8	10	12	14	16	18	20
UH	0	25	40	85	155	150	105	70	35	10	0

14 a) Derive the ordinates of a 9 hour unit hydrograph from the 3 hour unit hydrograph given below:

Time	0	3	6	9	12	15	18	21	24	27	30
(hr)											
UH	0	2	9	17	33	69	95	71	44	13	0

b) Explain the method of obtaining a 3 hour UH from a 2 hour UH using S hydrograph with the help of figure.

Module -3

- 15 a) What are the ill effects of irrigation?
 - b) In a particular soil with a dry unit weight of 12.5 kN/m³, the field capacity is 29% and the permanent wilting point is 13%. If the root zone depth is 1.1 m and the consumptive use is 15 mm, calculate the time frequency of irrigation. Assume readily available moisture as 75% of the available moisture.
- 16 a) Define duty and delta. Derive a relationship between the two.
 - b) The gross commanded area for a canal in an irrigation project is 17,000 ha and out of this, 80% is culturable. The intensity of Kharif is 26% and that for Rabi is 50%. The base period for Kharif is 20 weeks and that for Rabi is 22 weeks. Compute the

1100CET307122102

outlet discharge assuming the outlet factor as 1000 ha/cumec for Kharif and 2200 ha/cumec for Rabi. Also estimate the delta for both the crops.

Module -4

The following data pertains to a stream gauging station. The velocity was obtained using a current meter with a rating equation of $v = 0.18 + 0.35 \text{ N}_s$ where N_s is the number of revolutions/sec and v in m/s. Calculate the discharge of the stream using mean-section method.

Distance from	0	2	5	8	10	12	15	18	19
bank (m)									
Depth (m)	0	0.8	1.2	1.9	2.3	1.7	1.1	0.6	0
Revolutions	0	26	42	68	85	53	31	12	0
Time of observation (s)	0	100	100	100	100	100	100	100	0

a) What is meandering. Discuss the meandering parameters with a neat sketch.
b) Explain in detail the step-by-step procedure for the determination of life of a 10 reservoir.

Module -5

- a) Summarize the method of determination of yield of an open well.
 b) Derive steady state flow to a well in a confined aquifer.
 a) Explain the various types of tube wells.
 6
 - b) An open well with 0.35 m diameter fully penetrates an unconfined aquifer which extends to a depth of 100 m from the groundwater table. A steady discharge of 80 m³/hr was pumped from the well and the resulting drawdown in two observation wells at radial distances of 10 m and 20 m are 2.5 m and 0.8 m respectively. Compute the drawdown in the test well.

8
