0200MRT282062401

	Maga. College
Reg No.:	Name: Name:
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
Fourth	Semester B.Tech (Minor) Degree Examination June 2024 (2022 Admission)

Course Code: MRT282

Course Name: FUNDAMENTALS OF ANALOG AND DIGITAL ELECTRONICSHUP

Max. Marks: 100 Duration: 3 Hours

		PART A	Marks
,		(Answer all questions; each question carries 3 marks)	3
1		List two differences between BJT and FET and mention one usage of both.	
2		What is the condition to be satisfied to obtain sustained oscillations? Mention one	3
		application of oscillators.	2
3		Explain the importance of isolation amplifier.	3
4		What are the practical Op Amp Characteristics?	3
5		Define duty cycle.	3
6		What is the significance of VCO?	3
7		Reduce the function $f(A, B, C, D) = \sum m(0,7,8,9,10,12) + d(2,5,13)$ using K map	3
8		Implement a half subtractor using gates.	3
9		What is race around condition?	3
10		Differentiate synchronous and asynchronous counter.	3
		PART B (Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Explain the construction, working and characteristics of a n channel enhancement	10
		mode MOSFET.	
	b)	A single stage transistor has an open loop gain of 600 and closed loop gain of 50.	4
		Calculate the percentage of output which is fed back to the input.	
12	a)	Explain the working of a common emitter BJT amplifier.	7
	b)	Draw the circuit diagram of a Hartley Oscillator and explain how tank circuits aid	7
		in oscillations.	
		Module -2	
13	a)	With suitable circuit diagram explain op-amp as an integrator. Draw the	7
		frequency response of ideal integrator.	
	b)	Design an inverting amplifier with gain of-5 and input resistance of 10 k Ω .	7

0200MRT282062401

14	a)	With the help of a circuit diagram, explain the working of an Inverting Amplifier	7
		and derive the expression for closed loop gain.	
	b)	Explain a zero crossing detector using op amp.	7
		Module -3	
15	a)	Explain the working of IC 555 free running multivibrator with necessary	10
		diagrams.	
	b)	Explain lock range and capture range.	4
16	a)	Compare band pass and band stop filters.	6
	b)	Explain PLL with suitable diagrams.	8
		Module -4	
17	a)	Design and implement 3 bit gray to binary code converter.	8
	b)	State and prove De-Morgan's theorem.	6
18	a)	Implement the function $f(A, B, C) = \sum m(0, 1, 3, 4, 7)$ using 8x1 multiplexer.	6
	b)	What is a full adder? Design and implement a full adder using logic gates.	8
		Module -5	
19	a)	Design a 3-bit synchronous up-down counter.	10
	b)	How is a sequential circuit differ from a combinational circuit? Mention one	4
		example of each.	
20	a)	What is SR flip flop?	4
	b)	With suitable logic and timing diagrams explain the Parallel-In-Serial-Out Shift	10
		Register.	
