D M	NT
Reg No.:	Name:
NCE NO	
0	110011777303133301

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S, FE) Examination June 2024 (2019 Scheme)

Course Code: MRT 303

	Course Name: LINEAR CONTROL SYSTEMS		
Max.	Marks: 100 Duration: 3	Hours	
	PART A (Answer all questions; each question carries 3 marks)	Marks	
1	Distinguish between open loop and closed loop system.	3	
2	Write the block diagram reduction algebra for the following cases	3	
	i) Moving a summing point before a block		
	ii) Moving a take of point after a block		
	iii) Elimination of positive feedback		
3	Explain the analogous electrical elements in force-voltage analogy for the	3	
	elements of mechanical translational system.		
4	Write the torque balance equation of the idealized elements in a rotational	3	
	mechanical system.		
5	Determine the damping ratio and natural frequency of oscillation of the system	3	
	whose closed loop transfer function is given by $200 / s^2 + 20s + 200$		
6	A unity feedback system has an open loop transfer function of $G(s) = \frac{10}{(s+1)(s+2)}$	3	
	Determine the steady state error for unit step input.		
7	How the roots of characteristics equation are related to stability.	3	
8	List any three advantages of frequency response analysis.	3	
9	Which compensator behaves as a high pass filter? Write the transfer function and	3	
	draw its pole-zero plot.		
10	Explain lag compensator with an example.	3	
	PART B (Answer one full question from each module, each question carries 14 marks)		
Module -1			
11	Simplify the block diagram shown in figure then obtain the closed loop transfer function $C(S)/R(S)$	14	

12 Apply the gain formula to the signal flow graph shown in figure to find the transfer function X_5/X_1

Module -2

14

7

13 Determine the transfer function of the given mechanical system

- 14 a) Derive the transfer function of an armature-controlled DC motor.
 - b) Draw the torque-voltage and torque-current electrical analogous circuits and verify by writing mesh and node equations of the given system.

1100MRT303122301

Module -3

- 15 a) Consider a unity feedback system with a closed loop transfer function $\frac{C(S)}{R(S)} = \frac{KS+}{S^2+aS+}.$
 - i)Determine the open loop transfer function G(S).
 - ii) Show that the steady state error with unit-ramp input is given by $\frac{a-K}{b}$.
 - b) Label the following time domain specifications on step response of under damped
 second order control system and also write their definition.
 - i) Delay time
 - ii) Peak overshoot
- 16 A unity feedback system has $G(S) = \frac{K}{S(S+1)(0.1S+1)}$ and r(t) = 10t.
 - If K=2, determine $E_{ss}(t)$.
 - b) Find the minimum value of K for $E_{ss}(t) < 0.1$ for a unit ramp input

8

2

Module -4

For the given transfer function, draw bode plot and obtain gain cross over 14 frequency.

$$G(s) = \frac{20}{s(1+3s)(1+4s)}$$

20

18 A unity feedback control system has an open loop transfer function 14 $G(S) = \frac{K(S+2)}{S(S+3)}$ Sketch the root locus.

Module -5

- 19 a) Realize a lag compensator using electrical network and draw the bode diagram.
 - b) What are the applications of PID controller?
 - a) Explain automatic traffic light control with necessary sketches 8
 - b) Compare PI and PD controllers.
