Pages: 3

Reg No.:____

Name:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B. Tech Degree S5 (S, FE) / S5 (PT) (S) Examination June 2024 (2019 Scheme)

Course Code: ECT 303 Course Name: DIGITAL SIGNAL PROCESSING

		Course Name. DIGITAL SIGNAL I ROCESSING	
Max	x. M	arks: 100 Duration: 3	Hours
		PART A (Answer all questions; each question carries 3 marks)	Marks
1		DFT of a real valued signal $X(k)$. = { j, 1+j, A, 1-j, -1, B, -1-j, C}. Find the	3
		energy of the signal?	
2		Determine the circular convolution of the following sequences, $x(n) = \{1, 2, 3, 1\}$	3
		and h(n) = {4, 3, 2, 2 }	
3		FFT algorithm is an in-place algorithm. Justify it?	3
4		Calculate the number of real multiplications and real additions involved in the	3
		calculation of 512- DFT using direct computation?	
5		Given the specification pass band attenuation is 1 dB, stop band attenuation is	3
		30 dB, pass band edge frequency 200 rad/sec and stop band edge frequency 600	
		rad/sec . Determine the order of the Butterworth Analog filter?	
6		Describe the need for employing window technique for FIR filter design?	3
7		Why antialiasing filter is used in decimating systems?	3
8		Calculate the number of multiplications, additions and delay elements required	3
		in the direct form II realization of following system.	
		y(n) = 3y(n-1) + 2y(n-2) + 4x(n) + 0.4x(n-1) + 0.8 x(n-2)	
9		Differentiate between Harvard and Von-Neumann architecture used in DSP	3
		processors?	
10		Obtain the floating point arithmetic representation of numbers 6.5 and 1.5?	3
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Find the 4-DFT of the sequence $x(n) = 6 + \sin\left(\frac{2\pi n}{N}\right)$	5
	b)	Find the convolution of $x(n) = \{2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$ and	9

 $h(n) = \{3, 2, 1\}$ using overlap save method?

1100ECT303122201

- Obtain the response of an LTI system with impulse response $h(n) = \{1, 1, 1\}$ 5 for an input $x(n) = \{1, 2, 3, 1\}$ using circular convolution?
 - b) Given two sequences $x_1(n) = \{0,1, 2, 3, 4\}$, $y(n) = \{1, 0, 0, 0, 0\}$; Determine a sequence $x_2(n)$ so that $Y(k) = X_1(k) X_2(k)$

Module -2

- 13 a) Draw the flow diagram of 16 point radix 2 DIT FFT algorithm 9
 - b) Find the 4- IDFT of the sequence $X(k) = \{10, -2+2j, -2, -2-2j\}$ using radix 2 5 DIT FFT algorithm
- 14 a) Compute 8-DFT of the sequence $x(n) = \{0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0\}$ using radix 8 2 DIT FFT algorithm
 - b) Given at g(n) = {1, -1, 1, -1} and h(n) = {0, 2, 4, 6} find the 4 point DFTs of 6 these 2 sequences using a single 4 point DFT?

Module -3

- 15 a) Design an Analog Butterworth low pass filter that has 2 dB pass band 8 attenuation at a frequency of 20 rad/sec and at least 10 dB stop band attenuation at 30 rad/sec.
 - b) Apply bilinear transformation to $H(s) = \frac{2}{(s+1)(s+2)}$ with T = 1 sec and find H(z)?
- 16 a) Determine the filter coefficients of a linear phase FIR filter of length N = 15, which has a symmetric impulse response and a frequency response that satisfies the conditions, $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1, & k = 0, 1, 2, 3\\ 0.4, & k = 4\\ 0, & k = 5, 6, 7 \end{cases}$
 - b) Explain the significance of linear phase FIR filter and comment on its impulse 4 response?

Module -4

- Obtain the cascade and parallel structure of the system $y(n) = -\frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) + x(n) 2x(n-1) + x(n-2)$
 - b) Obtain the transposed direct form-II structure for the system y(n) = 0.5y(n-1) 0.25y(n-2) + x(n) + x(n-1)
- 18 a) Realize the system function using minimum number of multipliers 6 $H(z) = (1 + z^{-1}) (1 + 0.5z^{-1} + 0.5z^{-2} + z^{-3})$

1100ECT303122201

b) If quantization noise has uniform distribution with zero mean, find the quantization noise in ADC with step size Δ ?
