

ME 04 405—ADVANCED MECHANICS OF SOLVO

(2004 admissions)

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

- I. (a) State Hooke's law.
 - (b) What is rigid body motion? Explain how it can be avoided.
 - (c) Briefly explain about stress concentration factor.
 - (d) Explain the stress state in slender members.
 - (e) Define centroid and shear center.
 - (f) Explain the principle of minimum complementary energy.
 - (g) Explain about Wrinkler's theory.
 - (h) When a circular shaft is subjected to torsion show that the shear stress varies linearly from the axis to the surface.

 $(8 \times 5 = 40 \text{ marks})$

Part B

II. (a) Deduce an expression for the elastic potential energy stored per unit volume in a monotropic material with linear behaviour, as a function of the elements of the stress tensor.

Or

(b) The shearing stress at a point in a loaded structure $\tau_{xy} = 40$ MPa. Also it is known that the principal stresses at this point are $\sigma_1 = 40$ MPa and $\sigma_2 = -60$ MPa. Determine σ_x (compression) and σ_y and indicate the principal and maximum shearing stresses with an appropriate sketch.

III. (a) Consider a rectangle plate with sides a and b of thickness "t" as shown in Fig. 1. (i) Determine the stresses σ_x , σ_y and τ_{xy} for the stress function $\phi = c_1 x^3 y$, where c_1 is a constant; (ii) Draw a sketch showing the boundary stresses on the plate and find the resultant normal and shearing boundary forces on each of the faces.

(b) The thin cantilever shown in Fig. 2 is subjected to uniform shearing stress τ_0 along its upper surface (y = +h) while surfaces y = -h and x = L are free of stress. Determine whether Airy stress function

$$\phi = \frac{1}{4} \tau_0 \left(xy - \frac{xy^2}{h} - \frac{xy^3}{h^2} + \frac{Ly^2}{h} + \frac{Ly^3}{h^2} \right)$$

Satisfies the required condition

Fig. 2.

(b) The chearing stress at a point in

principal stresses at this point are o. = 40 MPa and o.

IV. (a) Derive an expression for radial stress (σ_i) and tangential stress (σ_0) for a solid rotating disk of radius r, made with a material of density ρ and Poisson's ratio v, rotating with an angular velocity ω .

(b) Investigate the following stress function. Determine the loading and bounds conditions that satisfy

$$\phi = -\frac{F}{d^3} xy^2 \left(3d - 2y\right)$$

Applied to the region included in y = 0, y = d, x = 0 on the side x positive.

V. (a) The cross-section of a thin walled aluminium tube is an equilateral triangular section of mean side length 50 mm and wall thickness 3.5 mm. If the tube is subjected to a torque of 40 N.m. what are the maximum shearing stress and angle of twist per unit length? Take G = 28 GPa.

Oi

(b) A thin walled bridge deck having singly symmetric cross-section as shown in the fig. 3. Determine the torsional stiffness of the section, T/θ', in (kN m²/degree), if the shear modulus is constant throughout and of value 70000 N/mm².

this point are $a_1 = 40$ MPs and $a_2 = -60$ MPs. Bets, mine a_1 (compression)

 $(4 \times 15 = 60 \text{ marks})$