Pages: 2

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S3 (PT) (S) Examination June 2024 (2019 Scheme)

Course Code: EET 303

Course Name: MICROPROCESSORS AND MICROCONTROLLERS

Ma	x. M		Duration: 3 Hours	
		PART A (Answer all questions; each question carries 3 marks)	Marks	
1		Explain the three basic building blocks of a micro-processor.	3	
2		Differentiate between instruction cycle and machine cycle in a microprocessor-based system.	3	
3		Explain the instructions used in 8085µP to implement a subroutine program.	3	
4		Distinguish between CNZ 8000H and JNZ 8000H, instructions of $8085\mu P$	3	
5		Distinguish between IO mapped IO and Memory Mapped IO schemes.	3	
6		Differentiate between hard and soft real time system	3	
7		List out the difference between LJMP and SJMP instructions in 8051 μ C	3	
8		Explain data types and directives used in 8051 μC	3	
9		What are the features of serial ports in 8051 μC	3	
10		Find the bits of TMOD registers to operate as timers in the following modes	3	
		(i) Mode 1 Timer (ii) Mode 2 Timer 0.		
		PART B (Answer one full question from each module, each question carries 14 marks)		
		Module -1		
11	a)	Point out the important of the following pins/terms of 8085 μP	10	
		1. READY 2. ALE 3. X ₁ X ₂ 4. Status signals 5. Control Signals		
	b)	Write a short note on different interrupts in 8085	4	
12	a)	Draw and explain the timing diagram of INX H instruction of $8085\mu P$	6	
	b)	Explain different addressing modes of 8085 μP . Give 2 example for each.	8	
		Module -2		
13	a)	A, BCD number is stored in memory location 6000H. Write an ALP to	7	
		convert this number to equivalent binary form.		

1100EET303122104

	b)	Analyse the content of stack pointer after the execution of CALL and RET	7
		instructions with an example	
14	a)	Explain the operation of following instructions in 8085 including number of	8
		bytes, addressing mode, machine cycle and flag status.	
		(i) LHLD 2000H (ii) XCHG (iii) DAD rp (iv) ANI 74	
	b)	In a temperature control process system, after each sampling process it is	6
		required to hold the sampled value for 0.2 second. Design an 8085 ALP to	
		obtain the required delay after each sampling.	
		Module -3	
15	a)	Design an interfacing circuit for one 2K×8 ROM and one 4K×8 RAM with	8
		8085 microprocessor and find the memory address range	
	b)	Illustrate the interfacing of 8 switches and 8 LEDs with 8085 μP and write the	6
		ALP program for the same. Assume the switches and LEDs are interfaced	
		through port A and Port B of 8255PPI, respectively. Other port can be taken as	
		output port.	
16	a)	List any four fields of application of embedded system	4
	b)	Draw and explain internal architecture of 8051 μC	10
		Module -4	
17	a)	Write an 8051 ALP to divide two numbers and store the LSB and MSB results	6
		in R0 and R1 registers of bank 1.	
	b)	Explain the addressing modes of 8051 μ C with 2 examples for each.	8
18	a)	Write an ALP to continuously sent out the alternate values 55H and AAH to	6
		Port 0 of 8051	
	b)	Explain the characteristics of I/O ports in 8051 μ C	8
		Module -5	
19	a)	Draw and explain the format of TCON register in 8051µC	6
	b)	Write an 8051 ALP to generate a square wave of 1 KHz from the TxD pin of	8
		8051, using Timer1. Assume clock frequency of 12 MHz	
20	a)	Explain serial data transfer modes of 8051µC	6
	b)	Draw and explain interfacing of DAC with 8051 μC	8
