1100MET303122103

Pages: 3

Reg	No.:		

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S3 (PT) (S) Examination June 2024 (2019 Scheme)

CHERUTHURUTH

Course Code: MET 303

Course Name: THERMAL ENGINEERING

Max. Marks: 100

Duration: 3 Hours

Marks

Use of Steam tables, Refrigeration tables, and Psychrometric charts are permitted

PART A

(Answer all questions; each question carries 3 marks)

1	Draw the P-V and T-S diagram for the modified Rankine cycle	
2	Why Carnot cycle is not used as steam power cycle? List any two reasons with	3
	the aid of T-s diagram	
3	List the difference between throttle governing and nozzle governing	3
4	What is meant by condition line in multistage turbine?	3
5	Mention the advantages and disadvantages of a rotary engine.	3
6	Draw the theoretical and actual indicator diagram of a four stroke petrol engine.	3
7	Write down the general combustion equation for the stoichiometric combustion	3
	of hydrocarbons with formula C _n H _{2n+2} .	
8	What is pre-ignition and why does it occur in SI Engine	3
9	Show the simple vapour compression cycle on T-s and p-h diagram	3
10	Define bypass factor and mention its significance	3
	PART B	
	(Answer one full question from each module, each question carries 14 marks)	
	Module -1	
11 a)	A steam power plant operates on a theoretical reheat cycle. The steam from	7
	boiler at 150 bar and 550 °C expands through the high pressure turbine. It is	
	reheated at constant pressure of 40 bar to 550 °C and expanded through the low	
	pressure turbine to the condenser pressure of 0.1 bar. Draw the T-s diagram and	
	find the quality of steam at turbine exhaust and thermal efficiency of the cycle.	
	Neglect pump work	
b)	With a neat sketch, explain the working of Benson Boiler	7

1100MET303122103

12 a) Explain the working and analysis, with the schematic and T-s diagram, of 7 regenerative cycle with one open feed water heater. b) A nozzle is to be designed to expand steam at the rate of 0.10 kg/s from 500 7 kPa, 210 °C to 100kPa. Neglect inlet velocity of steam. For a nozzle efficiency of 0.9, determine the exit area of the nozzle. Module -2 13 a) A Parson's Reaction turbine running at 400 rpm with 50% reaction develops 7 75kW per kg of the steam. The exit angle of the blade is 20° and the steam velocity is 1.4 times the blade velocity. Determine (i) Blade velocity (ii) Blade inlet angle. b) Describe the various methods of compounding in an impulse turbine. 7 14 a) Derive an expression for maximum blade efficiency for a single stage impulse 7 turbine in terms of blade speed ratio The steam leaves the nozzle of a single row impulse turbine with a velocity of 7 900 m/s. The nozzle angle is 20° and blade angles are 30° at inlet and outlet. Calculate the blade velocity and work done per kg of steam. Assume the flow over the blade is frictionless. Module -3 15 a) A test on a 6-cylinder, 4-stroke engine was conducted and the following 10 observations were made. Bore of the cylinder = 12cm, stroke of the piston = 12 cm, Speed of the engine =2400 rpm. The BP of the engine is measured by hydraulic dynamometer for which power is given by BP = WN/ 23400 kW, where W is the load in Newton and N is the speed in RPM. The air consumption is measured by air-box method. Load on the dynamometer = 480 N, Air orifice diameter = 6 cm, Discharge coefficient of orifice =0.6, Head causing the flow through orifice = 36 cm of water, Ambient pressure and temperature are 1 bar and 20 °C respectively, Fuel consumption = 18.6 kg/hr. C V of the fuel used = 43000 kJ/kg. Find (i) Brake mean effective pressure (ii) Specific Fuel consumption (iii) Brake thermal efficiency and (iv) Volumetric efficiency.

4

b) Discuss the effect of variable specific heat in actual cycle of IC Engine

1100MET303122103

16	a)	Explain the procedure of Heat balance test and its significance	8
	b)	What is exhaust blow down? Explain with the help of P-v diagram.	6
		Module -4	
17	a)	Explain the different stages of combustion in CI Engine with the help of a	8
		Pressure - crank angle diagram.	
	b)	Explain the phenomenon of detonation in SI Engine based on auto ignition	6
		theory	
18	a)	What are the basic requirements of a good combustion chamber? With neat	8
		sketches explain the different types of combustion chamber used in SI Engine	
	b)	Write a short note about the pollutants from SI and CI engines.	6
		Module -5	
19	a)	Derive an expression for COP of a Reversed Brayton Cycle for air refrigeration	5
		system.	
	b)	A vapour compression refrigeration system uses R-12 as a refrigerant. The	9
		maximum and minimum pressure of the cycle are 8 bar and 1.2 bar	
		respectively. At the compressor inlet, the vapour temperature is -12 °C and the	
		temperature of the liquid at the condenser outlet is 30 °C. The required	
		refrigerating load is 2.2 kW. The compressor runs at 600 rpm and has a	
		volumetric efficiency of 75%. Find COP and swept volume of compressor.	
20	a)	What are the requirements of comfort air conditioning?	6
	b)	Explain the summer air conditioning system with the help of a schematic	8
