

FOURTH SEMESTER B.TECH. (ENGINEERING) EXAMINATION, DECEMBER 2010

CH 2K 401—ENGINEERING MATHEMATICS-

(Common to AI/CE/EE/IC/ME/EC/PE)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- I. (a) Prove that the function $f(z) = z \overline{z}$ is nowhere differentiable.
 - (b) Find the image of the region $1 \le x \le 2$ under the mapping $W = e^z$.
 - (c) Evaluate $\int_C \frac{z}{z^2 + 1} dz$, where C is |z + i| = 1.
 - (d) Determine the poles and residue at each pole of the function $f(z) = \cot z$.
 - (e) Prove that $\frac{d}{dx} \left[x^{-n} J_n(x) \right] = -x^{-n} J_n(x)$.
 - (f) Express $4x^3 3x + 8$ in terms of Legendre polynomials.
 - (g) Classify the equation $e^x u_{xx} + e^y u_{yy} = u$ and find its characteristic equation.
 - (h) Using method of separation of variables, solve $\frac{\partial^2 u}{\partial x^2} = h^2 \frac{\partial u}{\partial t}$.

 $(8 \times 5 = 40 \text{ marks})$

- II. (a) (i) If f(z) + u + iv is an analytic function, then show that u and v are both harmonic functions.
 - (ii) Determine the analytic function f(z) = u + iv, where $v = \frac{-y}{x^2 + y^2}$.

Or

(b) Find the bilinear transformation which maps the points:

$$z_1 = \infty$$
, $z_2 = i$, $z_3 = 0$ into $w_1 = 0$, $w_2 = i$, $w_3 = \infty$.

Find the invariant point of this transformation.

III. (a) Expand the function
$$f(z) = \frac{1}{(1+z^2)(2+z)}$$
, where:

Or

- (b) Evaluate $\int_{0}^{2\pi} \frac{\cos \theta}{3 + \sin \theta} d\theta.$
- IV. (a) Solve the equation:

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \left(x^2 - n^2\right) y = 0$$

in power series.

Or the second of the second owners

(b) (i) Show that:

$$(n+1) p_{n+1}(x) = (2n+1) x p_n(x) - n P_{n-1}(x).$$

- (ii) Show that $p'_{2n}(0) = 0$.
- V. (a) A string is stretched and fixed between two points (0, 0) and (l, 0). Motion is initiated by displacing the string in the form $u = \lambda \sin\left(\frac{\lambda x}{l}\right)$ and released from rest at time t = 0. Find the displacement of any point on the string at any time l.

01

(b) Solve $u_t = u_{xx}$, 0 < x < 1, t > 0 subject to the conditions u(0, t) = 1, u(1, t) = 1, t > 0 $u(x, 0) = 1 + \sin \pi x$, 0 < x < 1.

 $(4 \times 15 = 60 \text{ marks})$