Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S3 (PT) (S) Examination June 2024 (2019 Scheme)

Course Code: CET 301 Course Name: STRUCTURAL ANALYSIS - I

Max. Marks: 100		3 Hours
	PART A	N 4 1
	(Answer all questions; each question carries 3 marks)	Marks
1	Explain arches and its parts with a neat figure	(3)
2	Explain the method of joints to analyse trusses	(3)
3	Differentiate force method and displacement method	(3)
4	Write the equation for	(3)
	(i)stiffness at the near-end for a beam with hinged far-end	
	(ii) stiffness at the near-end for a beam with fixed far-end	
5	Explain about the lack of fit of an indeterminate frame	(3)
6	Write the steps for slope deflection method to analyse beams	(3)
7	Write the condition for maximum BM, maximum negative SF, maximum	(3)
	positive SF when a moving UDL longer than the span of a simply supported	
	beam	
8	If the cable is connected to guided pully support, write the equation for	(3)
	(i)Vertical force on the tower in a suspension bridge	
	(ii)Horizontal force on the tower in a suspension bridge	
9	Derive an expression for deflection at the free end of a cantilever beam of	(3)
	span I with a concentrated load of w kN at the free end by using Castigliano's	
	theorem	
10	Write the equation for support reactions and H, when cable is subjected to a	(3)
	UDL of w kN/m over the span	
	PART B	
	(Answer one full question from each module, each question carries 14 marks) Module -1	
11	Determine the rotation at the supports and deflection at the mid span and	(14)
	under the loads in a simply supported beam.	

1100CET301122103

Figure 1

12 a) Find the forces in the member CD,DG, GH by using method of section

Figure 2

b) State and prove Castigliano's theorem for deflection

(4)

(10)

Module -2

13 Analyse the beam using consistent deformation method

(14)

Figure 3

Determine the deflection and rotation at the free end by using unit load (14) method. Assume uniform flexural rigidity EI throughout.

Figure 4

Module -3

Analyse the beam and Draw SFD and BMD using moment distribution (14) method

Figure 5

Analyse the beam and Draw SFD and BMD using slope deflection method (14)

1100CET301122103

Figure 6

Module -4

- 17 a) A cable is suspended from the point A and B which are 100m apart (10) horizontally and at different levels, the point A being 5m vertically higher than the point B and the lowest point in the cable is 10m below A. the cable subjected to a UDL of 60 kN/m over the horizontal span. Find (i) the maximum tension in the cable ii) the vertical and horizontal reactions at the each end.
 - b) Write a note on anchor cable supports. (4)
- A cable of span 60meter is supporting four concentrated loads 30kN, 40kN, 10kN (14) and 20kN respectively at points C, D, E, and F which are 10m, 20m 30m and 40m from left support. Both supports are in same level. Dip of point D is 8m. Calculate the support reactions and the tensions in the various parts of the cable. Also find the length of the cable.

Module -5

- 19 a) A simply supported beam has a span of 20m.UDL of 60 kN/m and 8m long (10) crosses the girder from left to right. Draw ILD for SF and BM at a section 8m from left end. Calculate the maximum positive shear force, maximum negative shear force, and maximum bending moment at this section
 - b) Draw ILD for SF and BM at any intermediate section of a simply supported (4) beams
- 20 a) A three hinged parabolic arch hinged at the supports and at the crown has a span of 30m and a central rise of 5m. it carries a concentrated load of 60kN at 18m from left support and a uniformly distributed load of 40 kN/m over the left half portion. Determine the moment, normal thrust, and radial shear at a section of 7.5m from the left support.
 - b) Show that the parabolic shape is a funicular shape for a three hinged arch (7) subjected to UDL over to its entire span
