Name:\_\_

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S5 (PT) (S) Examination June 2024 (2019 Scheme)

## Course Code: CST 301

### Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY

Duration: 3 Hours Max. Marks: 100

|    |    | PART A                                                                                     |       |
|----|----|--------------------------------------------------------------------------------------------|-------|
|    |    | (Answer all questions; each question carries 3 marks)                                      | Marks |
| 1  |    | Draw transition diagram for NFA (with or without $\epsilon$ -moves) for strings starting   | 3     |
|    |    | with '10' or '11'. $\Sigma = \{0,1\}$                                                      |       |
| 2  |    | Define the language acceptability by DFA, NFA and E-NFA                                    | 3     |
| 3  |    | Write down the regular expression for strings with even number of a's.                     | 3     |
|    |    | $\sum = \{a, b\}$                                                                          | 3     |
| 4  |    | How can we identify two equivalent states in a DFA?                                        | 3     |
| 5  |    | Is the grammar $E \to E + E / E \times E / a$ ambiguous? Justify your answer.              | 3     |
| 6  |    | State Myhill - Nerode Theorem                                                              | 3     |
| 7  |    | Differentiate between DPDA and NPDA                                                        | 3     |
| 8  |    | List out the transition rules ' $\delta$ ' used to convert given CFG $G$ to its equivalent | •     |
|    |    | NPDA M.                                                                                    | 3     |
| 9  |    | Explain how Turing Machine differs from PDA.                                               | 3     |
| 10 |    | Why TM model is widely accepted and considered as a general model for                      | 3     |
|    |    | computers?                                                                                 | 3     |
|    |    | PART B                                                                                     |       |
|    |    | (Answer one full question from each module, each question carries 14 marks)                |       |
|    |    | Module -1                                                                                  |       |
| 11 | a) | Prove that for every NFA M, there exist an equivalent DFA M'                               | 7     |
|    | b) | Design an NFA (without E-moves) for strings ending with '01'. Convert it into              | 7     |
|    |    | equivalent DFA. $\Sigma = \{0, 1\}$                                                        | 7     |
| 12 | a) | Draw the transition diagram of DFA for $L = \{ baxb / x \in \{a, b\}^* \}$ and obtain its  | 7     |
|    |    | regular grammar                                                                            | 7     |

b) Prove that, if L is accepted by an ordinary NFA, there exist an equivalent  $\epsilon$ -NFA that also accepts L

7

7

7

7

7

#### Module -2

13 a) Obtain the regular expression equivalent to the following DFA



- b) Develop equivalent automata for the Regular Expression  $(ab+b)^*(a+bb)^*a^*$  7
- 14 a) Prove that for every Regular Expression 'R', there is an  $\epsilon$ -NFA 'M' 7
  - b) Using pumping lemma, show that  $L = \{ a^p / p \text{ is a prime number } \}$  is not regular 7

### Module -3

- 15 a) What is Greibach Normal Form (GNF)? Convert the following CFG to GNF  $S \rightarrow ABA$ ,  $A \rightarrow aA/E$ ,  $B \rightarrow bB/E$ 
  - b) a) Design CFG for the following languages
    - (i)  $L = \{ wcw^R / w \in \{a, b\}^* \}$  where  $w^R$  represents reverse of w
    - (ii) Stings with exactly 2 zeros.  $\Sigma = \{0, 1\}$
    - (iii) (011+1)\*(01)\*
- 16 a) Minimize the following DFA using Myhill Nerode theorem



b) Show the equivalence classes of Canonical Myhill – Nerode relation for the languages of binary strings with odd number of zeros and even number of ones.

#### Module -4

- 17 a) Prove that for every PDA accepted by empty stack, there exists an equivalent PDA accepted by final state.
  - b) Design PDA for  $L = \{ a^i b^j c^k / k = i + j \}$ . Illustrate the working for the string 'aabbecee'

# 11CST301122201

| 18    | a) | Design PDA for $L = \{ ww^R / w \in \{a, b\}^* \}$ .                                                   | 7 |
|-------|----|--------------------------------------------------------------------------------------------------------|---|
|       | b) | State and prove any three closure properties of Context Free Languages.                                | 7 |
|       |    | Module -5                                                                                              |   |
| 19 a) | a) | Design TM for $L = \{ a^n b^n / n > 0 \}$ . Trace out the working for the input string                 | 7 |
|       |    | 'aabb'                                                                                                 | 1 |
|       | b) | Explain Chomsky hierarchy for formal languages and evaluate various types                              | 7 |
| 20    | a) | Design a TM to copy a block of zeros to the right side, leaving one blank symbol                       |   |
|       |    | (b) in between. Assume that initially the input tape contains $\mathbf{b0}^{n}\mathbf{b}$ and TM halts | 7 |
|       |    | with $b0^nb0^nb$ as the tape content.                                                                  |   |
|       | b) | Explain the working of Universal Turing Machine with its encoding scheme                               | 7 |
|       |    |                                                                                                        |   |