APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S, FE) / S3 (PT) (S) Examination June 2024 (2019 Scheme)

Course Code: ECT 301 Course Name: LINEAR INTEGRATED CIRCUITS

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions; each question carries 3 marks)

Marks

- Draw the equivalent circuit of an op-amp and list the component values of the 3 modelled circuit to work as an ideal op-amp.
- Find the maximum possible frequency, without distortions, for a sine wave of 3 voltage 12V peak to peak with an op-amp whose slew rate is 10V/μs.
- 3 Calculate Vout for the circuit shown below.

3

Find Vo, if open loop gain of the below op-amp is 1000.

3

5 How Barkhausen criteria is achieved in RC phase shift oscillator?

3

6 List the advantages of an Op-amp based active filter over conventional passive 3 filters.

1100ECT301122101

7 What does NE and 555 in NE555 timer IC stands for? 3 8 Design a monostable multivibrator using 555 to get a pulse width of 10ms. 3 9 Explain Line regulation and Load regulation. 3 10 Find the resolution of a 10 bit ADC with 5V full scale reading. 3 PART B (Answer one full question from each module, each question carries 14 marks) Module -1 Explain the principle of operation of Widlor current mirror and its advantages? 11 8 Deduce the expression for its current gain. b) Draw and explain the voltage transfer curve and frequency response curve of an 6 op-amp. 12 a) Derive CMRR, input resistance and output resistance of a dual input balanced output 8 differential amplifier configuration. b) Explain the following properties of a practical opamp 6 (i) Bandwidth (ii) Slew rate (iii) Input offset voltage (iv) CMRR Module -2 8 13 a) Derive the following characteristics of a voltage series amplifier: i) Closed loop voltage gain ii) Input resistance iii) Output resistance iv) Bandwidth b) Find the values of resistors R1,R2 and R3 so that $V_0 = -10 \text{ V}1 - 5 \text{ V}2 + 4 \text{ V}3$

14 a) With necessary equations and waveforms explain the working of a schmitt 8 trigger circuit with different values for upper and lower threshold. Also design such a Schmitt trigger circuit with $V_{UT} = 9V$ and $V_{LT} = -7V$. Assume saturation voltage levels as 12V and -12V.

1100ECT301122101

	b)	Draw and explain precision full wave rectifier circuit. Include equivalent circuits	0
		for positive and negative half cycles.	
		Module -3	
15	a)	Draw and explain the working of an op-amp based RC phase shift oscillator.	8
		Also derive the equation for frequency of oscillation.	
	b)	Draw the circuit of a state variable filter and derive the transfer function of high	6
		pass filter response in it.	
16	a)	Draw and explain the working of an op-amp based triangular wave generator.	8
		Also derive the equation for frequency of oscillation.	
	b)	Design a 50Hz twin- T notch filter with a Q factor of 15.	6
		Module -4	
17	a)	Using internal diagram of NE555 IC, explain the working of symmetric astable	7
		multivibrator circuit.	
	b)	Using internal block diagram of NE 566 explain the working of VCO.	7
18	a)	Using internal diagram of NE555 IC explain the working of monostable	7
		multivibrator circuit. Write the necessary condition for the trigger voltage level?	
	b)	Explain the working of Phase Locked Loop and its application as a frequency	7
		multiplier circuit.	
		Module -5	
19	a)	Explain how external current fold back protection is achieved while designing	7
		voltage regulator using IC 723.	
	b)	Find the output voltage for the following DACs having an output voltage range	7
		of 0 to 10V.	
		i) 0110 for a 4 bit DAC	0
		ii) 10111100 for an 8 bit DAC	
		iii) 1010100011 for a 10 bit DAC	
20	a)	Design a voltage regulator using IC 723 for an output voltage of 5V and current	7
		of 2A. Assume Vref = 7V. Also explain how line regulation is achieved in it.	
	b)	With a neat diagram explain the working of successive approximation type ADC	7