0100MAT101052401

Pages: 3

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree (S, FE) Examination June 2024 (2019 Scheme

Course Code: MAT 101 Course Name: LINEAR ALGEBRA AND CALCULUS (2019 -Scheme)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks

Marks

Find the rank of the matrix $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{bmatrix}$.

(3)

(3)

(7)

Find the sum and product of eigen values of $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 6 \\ 0 & 0 & 6 \end{bmatrix}$ without finding

the characteristic equation.

Find the slope of the sphere $x^2 + y^2 + z^2 = 14$ in the y direction at (1,2,3)

Show that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$, where $z = 10x^5y^3 + 5x + 2y$ (3)

5 Find the area of the region bounded by $y = x^2$ and y = x. (3)

6 Evaluate $\int_{2}^{4} \int_{1}^{3} (40 - 2xy) dx dy$. (3)

7 Test the convergence of the series $\sum_{k=1}^{\infty} \frac{99^k}{k!}$ (3)

8 Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ (3)

9 Find the Maclaurin series for the function $f(x) = xe^x$ (3)

10 Write Binomial series for $(1+x^2)^3$ (3)

PART B

Answer one full question from each module, each question carries 14 marks.

MODULE 1

11 a Solve the following system of equations using Gauss elimination method

$$y - 3z = -1$$

$$x + z = 1$$

$$3x + y = 2$$

$$x + y - 2z = 0$$

0100MAT101052401

- b Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. (7)
- Find the matrix of the transformation that diagonalise the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. (7)
 Also write the diagonal matrix.
 - b Find the value of α for which the system of equation is consistent. (7) x + y + z = 1 $x + 2y + 3z = \alpha$ $x + 5y + 9z = \alpha^{2}$

MODULE 2

- 13 a Find the local linear approximation L of $f(x, y, z) = \log(x + yz)$ at the point (7) (2,1,-1).
 - If w = f(P, Q, R) where P = 2x 3y, Q = 3y 4z, R = 4z 2x, then prove that $\frac{1}{2} \frac{\partial w}{\partial x} + \frac{1}{3} \frac{\partial w}{\partial y} + \frac{1}{4} \frac{\partial w}{\partial z} = 0$ (7)
- 14 a Locate all relative extrema and saddle points of $x^3 + y^3 3xy = 0$. (7)
 - b Find the differential dw of the functions. (7)
 - i) $w = \frac{xyz}{x+y+z}$
 - ii) $w = e^{xy}$

MODULE 3

- Evaluate $\iint_R \frac{1}{1+x^2+y^2} dA$ where R is the sector in the first quadrant bounded by y = 0, y = x, $x^2 + y^2 = 9$. (7)
 - b Evaluate the integral $\int_0^4 \int_y^4 \frac{x}{x^2 + y^2} dx dy$ by reversing the order of integration. (7)
- 16 a Use triple integral to find the volume of the solid within the cylinder (7) $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.
 - b Find the center of gravity of a triangular lamina with vertices (0,0), (0,1) and (7) (1,0) and density function $\rho(x,y) = xy$ and mass $= \frac{1}{24}$.

MODULE 4

17 a A ball is dropped from a height of 10m. Each time it strikes the ground it (7)

0100MAT101052401

bounces vertically to a height that is $\frac{2}{3}$ of the preceding height. Find the total distance travelled by the ball, if it is assumed to bounce infinitely often.

Check the convergence the following series

b i)
$$\sum_{n=1}^{\infty} \frac{n}{(2n-1)(2n+1)(2n+3)}$$
 (7)

ii)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n^2 + 1} \right)^{n^2}$$

18 a Show that the series
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$
 is conditionally convergent. (7)

b Check the convergence of the series
$$\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots$$
 (7)

MODULE 5

19 a Find the Taylor series expansion of
$$f(x) = x \sin x$$
 about the point $x = \frac{\pi}{2}$ (7)

Find the Fourier series representation of $f(x) = x^2$ in $[-\pi, \pi]$ and deduce that

b
$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$
(7)

20 a Find the half range Fourier cosine series of
$$f(x) = \cos x$$
 in $0 \le x \le \frac{\pi}{2}$ (7)

b Find the half range Fourier sine series of
$$f(x) = e^x$$
 in (0,1) (7)
