Name: Reg No .: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT B.Tech Degree S3 (S,FE) / S3 (PT) (S,FE) Examination June 2024 (2015 Scheme) Course Code: EC207 Course Name: LOGIC CIRCUIT DESIGN **Duration: 3 Hours** Max. Marks: 100 PART A Answer any two full questions, each carries 15 marks. Marks 1 a) Convert the decimal numbers 456.50 and 164.75 to binary, octal and (6)hexadecimal. b) What is meant by the Hamming code? A noisy channel is used to send the message "1101101," which is coded in the 7-bit even parity Hamming code. (6)Decode the message, assuming that at most a single error occurred in each code word c) Perform the following conversions i) 25₁₀ to BCD (3) ii) 152₁₀ to Excess 3 iii) 1101011001 to gray code Using K-map, obtain the minimal sum of the product of the following expression 2 a) (8) and realize using NAND gates only. $F(ABCD) = \sum m(0,2,3,5,7,12,15) + \sum d(1,6,14)$ b) Consider two numbers $A = A_1 A_0$ and $B = B_1 B_0$. Design a combinational (7)circuit to compare these numbers and generate outputs Z_1 if A = B, Z_2 if A < B and Z_3 if A > B(6)

3 a) Design a full adder using 3-to-8-line decoder and gates

b) Design and realise using 8 X 1 multiplexer (3)

$$f(A, B, C, D) = \sum m(0,2,3,6,7)$$

c) Perform the following operations (6)

i) $DCEA_{16} + 4BF1_{16}$

 $ii) 734_8 - 526_8$

(iii)110101)₂ – 1010)₂ using 1's and 2's complement method

08000EC207122302

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Sketch the two input TTL NAND gate in totem pole configuration and with the help of truth table explain its operation. (7)
 - b) Using NAND gates implement the JK flip-flop and explain the operation with truth table, excitation table and characteristic equation.
- 5 a) Define the terms noise margin, voltage and current levels and power dissipation (7) of logic families. Prepare a table that compares the above values of the TTL, ECL, and CMOS logic families.
 - b) Design a MOD 5 asynchronous counter using JK flip-flop. (8)
- 6 a) Compare PAL and PLA with the help of example. (5)
 - b) Design a 3-bit synchronous up-counter using T flipflop (10)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Draw the logic diagram of a 4-bit Ring counter and explain the working with (10) truth table and timing diagram.
 - b) Design the logic circuit using JK flip-flop for the given state table where X is the input. Draw the state diagram, transition table, D flip-flop excitation table, logic diagrams.

Present state	Next State		Output (Z)	
	X=0	X=1	X=0	X=1
A	A	C	0	0
В	A	С	1	0
С	A	D	0	0
D	A	D	0	1

- 8 a) Design a 2-bit synchronous up/down counter using T flipflop that counts up (10) when the control signal M=1 and counts down when M=0.
 - b) Design a circuit to detect the sequence 110 with overlapping, using D FF. Draw (10) the state diagram, state table, excitation table and the logic circuit.
- 9 a) Explain the working of a 4-bit SISO and 4-bit PIPO register with the help of (10) logic diagram and timing diagram.

08000EC207122302

b) Reduce the following state table using equivalence class state reduction (10) technique.

Present state A	Next state and output				
	X=0		X=1		
	A	0	В	0	
В	Е	0	С	0	
С	Н	0	В	0	
D	С	1	G	0	
Е	G	0	F	0	
F	F	1	Е	1	
G	В	1	G	0	
Н	D	0	I	0	
I I I I I I I I I I I I I I I I I I I	\mathbf{I}	1	Н	1	
