Reg No.:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (R,S) / S2 (PT) (S,FE) / S4 (WP) (R) Examination May 2024 (2019 Scheme)

Course Code: EET204

Course Name: ELECTROMAGNETIC THEORY

Max. Marks: 100

Duration: 3 Hours

		PART A	
		(Answer all questions; each question carries 3 marks)	Marks
1		State Stoke's theorem	3
2		Write the differential elements in cylindrical co-ordinate system	3
3		Find \overline{D} at P (6, 8, -10) caused due to a point charge of 30mC at the origin.	3
4		Derive Poisson's equation	3
5		State Biot-Savart law	3
6		Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical	3
		tube of 6cm diameter. The length of the tube is 60m and the solenoid is in air.	
7		What is meant by depth of penetration?	3
8		What are the characteristics of uniform plane wave?	3
9		For an open wire overhead line phase constant is 0.04 rad/km. Find the	3
		wavelength and velocity at a frequency of 1600Hz.	
10		Explain electromagnetic interference	3
		PART B (Answer one full question from each module, each question carries 14 marks)	
		Module -1	
ņ	a)	Given a vector field $\overline{F} = \rho \cos^2 \phi (\overline{a_{\rho}} + z \overline{a_{\phi}})$ is in cylindrical system were	8
		$(0 \le z \le 2, \rho=2)$. Verify divergence theorem	•
	b)	Define curl of a vector field and its physical significance	6
12	a)	Explain rectangular to spherical co-ordinate transformation with necessary	7
		diagram	
	b)	Transform the vector $\overline{D} = r^2 \overline{a_r} + r \cos \theta \overline{a_{\phi}}$ which is in spherical co-ordinate	7
		system to cartesian co-ordinate system	

Module -2

- 13 a) Two-point charges each of 10μC are placed in free space at points (-2,0,0) and 5 (2,0,0) respectively. What is the value of point charge placed at point (0,0,2) if the total force at point (0,0,2) is 2.55 a_z N ?
 - b) Derive an expression for electric field intensity due to a uniformly charged 9 infinite line charge having charge density $\rho_l C/m$ placed along z axis

7

14 a) An electric potential is given by,

$$V = \frac{60sin\theta}{r^2}$$
 Volts. Find V and \overline{E} at P(3, 60°, 25°).

b) Derive the expression for capacitance of a coaxial capacitor of length L, where 7 the inner conductor has radius a and the outer conductor has radius b.

Module -3

- 15 a) Explain why scalar magnetic potential can be defined only for region where the 4 current density is zero?
 - b) A current filament carries a current of 5A in az direction on z-axis. Find 10 magnetic field intensity H at point (2,2,4) due to this filament if it extends from (i)z=0 to 6m (ii)z= -α to α

16 a) Write Maxwell's equation in integral form along with its physical significance 8

b) Region 1, where $\mu_{r1} = 4$, is the side of the plane y + z = 1 containing the 6 origin (Ref Fig. 1). In region 2, $\mu_{r2} = 6 \cdot B_1 = 2\bar{a}_x + 1\bar{a}_y$ Tesla. Find B2 and H2.

Module -4

Fig.1

- 17 a) Derive the expressions for constants describing propagation of a uniform plane 7 wave in good conductor
 - b) The time-domain expression for the magnetic field of a plane wave travelling in a 7 loss-less medium is given by the following expression:

 $H(x,t) = 0.2\cos(6\pi \times 10^8 - 10.2x) \bar{a}_z A/m$. Find i) Direction of wave

0200EET204072301

propagation ii) Dielectric constant and intrinsic impedance iii) Time domain expression of the electric field iv) Time average power density.

- 7 18 a) A wave propagating in a loss-less dielectric has components \overline{E} = $200Cos(10^8t - \beta z)\overline{a_x}$ V/m and $\overline{H} = 2Cos(10^8t - \beta z)\overline{a_y}$ A/m. If the wave is travelling at a velocity of 0.2 times the velocity in free space, find (i)intrinsic impedance (ii)phase constant (iii)relative permittivity (iv)wavelength
 - b) Derive electromagnetic wave equation in phasor form

Module -5

7

- 19 a) Define the terms SWR and impedance matching 6 b) A distortion less transmission line operating at 500 MHz has characteristics 8 impedance 80 Ω , attenuation constant 0.04 Np/m, phase constant 1.5 rad/m. Find the line parameters and wavelength of the signal. 6
- 20 a) What are the primary constants of transmission line?
 - b) A transmission line has the following per unit length parameters, $L = 0.1 \mu H$, 8 $R = 5\Omega, C = 300pF, G = 0.01 mho$. Calculate the characteristics impedance of the line at 500 MHz. Obtain the same parameters for the lossless line at 500MHz.

* * *