Reg No.:______ Name:______

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (R, S) / S4 (WP) (R) ✓ S2 (PT) (S, FE) Examination May 2024 (2019 Scheme).

Course Code: MAT202

Course Name: PROBABILITY, STATISTICS AND NUMERICAL METHODS

	Course Name: PROBABILITY, STATISTICS AND NUMERICAL METHODS						
Max.	Marks: 100 Duration: 3	Hours					
	PART A (Answer all questions; each question carries 3 marks)	Marks					
1	If $f(x) = k2^x$ is the probability distribution of a random variable that can take values	. 3					
	x = 0, 1, 2, 3 then find k.						
2	Suppose $E(X) = 5$ and $E[X(X-1)] = 25$. Find $E(X^2)$.						
3	If the probability density function of a random variable X is $f(x) = \frac{3}{2}(1-x^2)$,						
	$0 \le x \le 1$ then find its mean.						
4	Find mean and variance of the Uniform distribution $f(x) = \frac{1}{10}$, $10 \le x \le 20$.						
5	A random sample of 200 items from a large population gives mean value 50 and						
	standard deviation 9. Determine the 95% confidence interval of the mean of the						
	population.						
For the population of individuals who own iPhone, $p = 0.25$ is the proportion the							
	a given app. For a random sample of size $n = 4$, find mean and standard deviation of						
	• the sampling distribution of the population proportion.						
7	Write the formula for finding $\sqrt{5}$ using Newton-Raphson's Method.						
8 Construct Newton's forward difference table for the below data.							
•	1931 1941 1951						
	40.62 60.80 79.95						
9	Using Euler's method, find y (0.2) if $y^{\parallel} = x + y$, y (0) =1.						
10	Obtain the values of y at $x = 0.1$ using Runge-Kutta method of second order for the	3					
	differential equation $y' = -y$, $y(0) = 1$.						
PART B							
(Answer one full question from each module, each question carries 14 marks)							
	Modulo 1						

Module -1

11 a) If a random variable X has the probability mass function

8

0200MAT202122303

X	1	•2	3	4
f(x)	2k	3k	k	4k

then find (i) k, (ii) $P(0 \le X \le 3)$, (iii) p(4), (iv) Distribution function

b) A car hire firm has 2 cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 2. Calculate the proportion of days on which (i) neither car is used (ii) some demand is refused.

6

6

8

5

- 12 a) The joint probability mass function of X and Y is given by $p(x, y) = \frac{x+2y}{18}$ if $(x, y) \in \{(1, 1), (1, 2), (2, 1), (2, 2)\}$. Find (i) Marginal distributions (ii) Verify whether X and Y are independent.
 - b) Let $X \sim B$ (n, p). If n = 6, 9 P(X=4) = P(X=2), then find p.

Module -2

- 13 a) If a continuous random variable has the probability density function $f(x) = k e^{-2x}$, x > 0 then find (i) the value of k, (ii) P (0<X<3), (iii) P(X>0.5) and (iv) Distribution function
 - b) The weight of certain brand of shampoo packets are uniformly distributed between 6 9.3 gm and 10.5 gm. In a random lot of 100 packets how many packets (i) exceed 10 gm (ii) are below 10.2 gm.
- 14 a) In a normal distribution 7% of the items are under 35 and 10% of the items are above 8 55. Calculate the mean and variance.
 - b) Verify whether X and Y are independent if f(x,y) = 24xy, $0 \le x \le 1$, $0 \le y \le 1$, x + 6, $y \le 1$.

Module -3

- The mean weight obtained from a random sample of size 100 is 64 gm. The standard deviation of the weight distribution of the population is 3 gm. Test the statement that the mean weight of the population is 67 gm at 5% level of significance.
 - b) A manufacturer claims that only 10% of his items are defective. But critics claim that 7 more than 10% are defective. A sample of 60 items has 20 defective materials. Test the manufacturer's claim at 5% level of significance.
- 16 a) A sample of 20 items has mean 42 and standard deviation 5. Test that it is a random sample from a population with mean 45.

0200MAT202122303

b) In two large populations there are 30% and 25% respectively of blue eyed people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the 2 populations?

Module -4

- 17 a) Compute $\int_0^1 \frac{1}{1+x^2} dx$ using Simpson's one third rule with h = 0.25.
 - b) Using Lagrange's formula find y (9.5). Given y (7) = 3, y (8) = 1, y (9) = 1 and 8 y (10) = 9.
- 18 a) Compute y(13) using Newton's Backward difference formula, if given

 | x | 3 | 6 | 9 | 12 | 15 |
 | y | 18 | 27 | 36 | 45 | 54 |
 - b) Find the positive root of $x^3 = 2x+5$ by Regula-Falsi method up to 3 places of 8 decimals.

Module -5

- 19 a) Using Runge- Kutta method of IV th order find y (0.1). Given $\frac{dy}{dx} = y$ -x with y(0) = 2
 - b) Solve by Gauss-Seidel method the following system:

$$28x + 4y - z = 32$$
$$x + 3y + 10z = 24$$
$$2x + 17y + 4z = 35$$

- 20 a) Fit a straight line to the points (0,2), (2,0), (3,-2), (5,-3) using method of least 7 squares.
 - b) Using Adam's method find y (0.4). Given $\frac{dy}{dx} = \frac{1}{2} xy$, y(0) =1, y(0.1) = 1.01, y(0.2) = 7 1.022, y(0.3) = 1.023