A

06000CS301012301

Reg No.:	Name:	07.0	1888 1888 1888	No.	X	101
	AM TECHNOLOGICAL UNIVER (PT) (S,FE) Examination June 2024	11	141	eme)	N/34	划
		1	Segretary.	THURU		1

Course Code: CS301 Course Name: THEORY OF COMPUTATION

Max. Marks: 100		Tarks: 100 Duration: 3	Hours
		PART A	Marks
		Answer all questions, each carries 3 marks.	Marks
1	Write a regular grammar for generating the language $L = \{a^m b^n \mid m, n > 0\}$		(3)
2		Design a DFA for the language $L = \{x \text{ in } \{a,b\}^* \mid x \text{ contains a as third}\}$	(3)
		character}	
3		Explain Mealy machine.	(3)
4		Explain the working of 2-way Finite State State Automata	(3)
		PART B	
		Answer any two full questions, each carries 9 marks.	
5	a)	Prove that the language accepted by NFA and DFA are same	(5)
	b)	Define e-closure of a state in an e-NFA. Give an example.	(4)
6	a)	State Myhill-Nerode theorem. Prove that $L = \{a^nb^n \mid m, n > 0\}$ is not regular	(9)
		using Myhill-Nerode theorem.	
7	a)	With the help of an example explain Thompsons Construction (Regular	(5)
,		Expression to NFA)	
	b)	Write regular expressions for the following languages	(4)
		i) $L = \{x \text{ in } \{a,b\}^* x \text{ starts with } a \}$	
v		ii) $L = \{x \text{ in } \{a,b\}^* \mid x \text{ contains a as third character}\}$	
		PART C	
		Answer all questions, each carries 3 marks.	
8		Explain the two modes of language acceptance of a PDA	(3)
9		Design a CFG to generate $L = \{a^m b^n c^n d^m \mid m, n > 0\}$	(3)
10		Describe Chomsky's Normal Form.	(3)
11		$L1 = \{x \text{ in } \{a,b\}^* \mid x \text{ contains odd number of b's} \}$ and $L1 = \{x \text{ in } \{a,b\}^* \mid x \}$	(3)
		contains even number of b's}. What is the union of L1 and L2?	

06000CS301012301

PART D

	•	Answer any two full questions, each carries 9 marks.	
12	a)	State Pumping Lemma for regular languages.	(3)
	b).	Prove that $L = \{a^n \mid n \text{ is prime}\}\ $ is not regular using Pumping Lemma.	(6)
13	a)	Write the formal definition of a PDA.	(3)
	b)	Design a PDA which accepts the language $L = \{ WcW^R where W \text{ is in } \{a,b\}^* \}$	(6)
14	a)	Explain different steps involved in the simplification of a CFG.	(6)
	b)	Show that S->E+E E*E a is ambiguous.	(3)
	,	PART E	
		Answer any four full questions, each carries 10 marks.	
15	a)	Prove that the language $L = \{ww w \text{ in } \{a,b\}^*\}$ is not CFL using Pumping	(6)
		Lemma for CFL	
	b)	Write a CSG for $L = \{a^n b^n c^n \mid n > 0\}$	(4)
16	a)	Design a TM which accepts palindromes over the alphabet {a,b}	(7)
	b)	Write and explain the instantaneous description of a Turing Machine	(3)
17	a)	Design a TM to increment a binary number	(6)
	b)	Explain Universal TM	(4)
18	a)	Explain Chomsky's classification of grammars	(7)
	b)	Describe the language acceptability of LBA	(3)
19	,	Explain recursively enumerable set?	(4)
- /	b)	Commission language is requirily	(6)
20	,	State and prove that halting problem of TM is undecidable	(10)

- (-