Reg No.:

Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree (S, FE) Examination June 2024 (2015 Scheme)

Course Code: MR301 Course Name: LINEAR CONTROL SYSTEMS

Max. Marks: 100

Duration: 3 Hours

PART A

			Answer all questions, each carries 5 marks.	Marks
1		Write the block diagram reduction algebra for the following cases:		
	e	i)	Combining cascaded blocks	
		ii)	Moving a summing point before a block	
		iii)	Moving a take of point after a block	
		iv)	Elimination of negative feedback	
		v)	Elimination of positive feedback	
2		What is meant by Mathematical modelling? How do you model a mechanical (
		rotationa	l system?	
3		Derive the unit impulse response of first order system.		(5)
4		What is the relationship between system poles and stability?		
5	List any five advantages of frequency response analysis.			(5)
6		Write the rules for constructing a Bode plot.		
7		Why is tuning important in a PID controller?		(5)
8		What is the	he working principle of automatic street light controller using LDR?	(5)
			PART B	
0		Convert	Answer any three questions, each carries 10 marks.	

Convert the block diagram shown in fig.1 into signal flow graph and determine (10) a)

the transfer function using Mason's gain formula.

Fig.1

16000MR301122301

10 a) State D'Alembert's principle.

b) Write the equations of motion in s-domain for the mechanical system shown in (8)Fig.2. Obtain the transfer function of the system.

(2)

(2)

Fig.2

- 11 a) Derive the transfer function and hence construct the block diagram of an (10) armature-controlled DC motor.
- 12 a) Find the position, velocity and acceleration error constants for the system given (8) in fig.3.

- b) What is steady state error?
- 13 a) Draw the root locus diagram for a closed loop control system whose open loop (10) transfer function is given by G(S)=K/S(S+5)(S+10).

Also find if the system is stable or not.

PART C

Answer any two questions, each carries 15 marks.

- 14 a) For the following transfer function, draw a logarithmic plot and obtain gain cross (15)over frequency.G(S)=20/S(1+3S)(1+4S)
- 15 a) Consider a unity feedback system having an open loop transfer function (15)
 G(S)=K/S(1+0.2S)(1+0.05S). Sketch the polar plot and determine the value of
 gain margin and phase margin at K=1.
- 16 a) Explain automatic traffic light control with necessary sketches.(10)b) Compare PI and PD controllers.(5)17 a) What is compensator in control system?(5)b) Explain phase lag and phase lead compensators in detail.(10)
