05000EC202122302

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVER

B.Tech Degree S4 (S,FE) / S2 (PT) (S,FE) Examination May 2024 (2015)

Course Code: EC202 Course Name: SIGNALS & SYSTEMS

Max. Marks: 100

4

5

PART A

Answer any two full questions, each carries 15 marks.

1 a) Determine whether the following system is time-invariant, linear, dynamic and (8) causal.

$$y(n) = x(n) + \frac{1}{x(n-1)}$$

b) Compute the power and energy of the following signals and check whether they (7) are power signals or energy signals

(i)
$$x(n) = (\frac{1}{2})^n u(n)$$

(ii)
$$x(t) = (1 + e^{-5t})u(t)$$

- 2 a) An LTI system is characterized by the impulse response $h(n) = \{1,2,-1\}$. Find the (8) response of the system for the input $x(n) = \{1,-2,-1,1\}$
 - b) Find the convolution of the given signals x(t) and h(t) (7) $x(t) = e^{-at}u(t)$, $h(t) = e^{-bt}u(t)$
- 3 a) Derive the condition for stability of a discrete time LTI system in terms of its (5) impulse response.
 - b) Given x(t) = u(t+1) + u(t-1) u(t-2) u(t-4). Plot (i) x(t) (ii) x(t-3) (iii) x(2t) (iv) x(2t-3) (v) x(-t)

PART B

Answer any two full questions, each carries 15 marks.a) State and prove the time-shifting property of Fourier Transform.(5)b) Determine the Laplace transform of the signal given below and find the ROC(10)
$$x(t) = e^{-3t}u(t) + e^{-4t}u(t)$$
What are the pole and-zero locations?a) What is ROC of Laplace Transform? State any 5 properties of ROC(7)b) Determine the Fourier transform of the following signals(8)1) $x(t) = sin (\Omega_0 t)$ (1)

2) x(t) = sgn(t)

B

Reg No.:____

Duration: 3 Hours

Marks

(10)

05000EC202122302

6	a)	State and prove the sampling theorem for low-pass signals.	(4)
	b)	Find the inverse Laplace transform of $X(s) = \frac{1}{s(s+2)}$	(5)
	c)	Find the Nyquist rate and Nyquist interval for the signals	(6)
		(a) sinc (100 π t) and b) sinc (100 π t) + sinc(50 π t).	
		PART C	
		Answer any two full questions, each carries 20 marks.	
7	a)	State and prove the time-shifting property of z-transform	(4)
	b)	Determine the discrete Fourier series representation for the sequence $x(n) = \cos \frac{\pi}{4} n$ and plot the magnitude and phase response.	(8)
	c)	Determine the inverse DTFT of the following signals	(8)
		1) $X(e^{jw}) = e^{-jw}$ for $-\pi \le w \le \pi$	
		2) $X(e^{jw}) = e^{-jw}[0.5 + 0.5 \cos(w)]$	
8	a)	State and prove the convolution property of DTFT.	(4)
	b)	Find the frequency response of the following causal systems using DTFT	(8)
		1. $y(n) = \frac{1}{2}x(n) + x(n-1) + \frac{1}{2}x(n-2)$	
		2. $y(n) - \frac{1}{4}y(n-1) - \frac{3}{8}y(n-2) = x(n) + x(n-1)$	
	c)	Find the DTFT of the following signals	(8)
		1) $x(n) = u(n-k)$	
		2) $x(n) = \delta(n+2) - \delta(n-2)$	
9	a)	Establish the relationship between s-plane and z-plane	(4)
	b)	Compute the z-transform and ROC of the following sequences. i) $x(n) = a^n u(n)$	(8)
		ii) $x(n) = -b^n u(-n-1)$	
	, c)	A discrete-time LTI system is characterised by the impulse response	(8)
		$x(n) = \left(\frac{1}{3}\right)^n u(n)$. Use z transform to determine the frequency response of the	
		system to the input $x(n) = \left(\frac{1}{5}\right)^n u(n)$.	
