		11	16	REDUCA	160	1
Reg No.:	Name:	1/4	1/0	50	1/2/	-1
	APJ ABDUL KALAM TECHNOLOGICAL UNIVER				VI I	ER
	Fourth Semester B.Tech Degree (S,FE) Examination May 2024 (2	015	Sp	heme)	\$ 2	
		1	3	AMOLY OF	٠ عيا	1
			1	PUTHURUT	THE PARTY OF	

Course Code: ME200

		Course Name: FLUID MECHANICS AND MACHINERY (ME, SF)	
Ma	x. M	arks: 100 Duration: 3 H	lours
1	a)	PART A Answer any three questions. Each question carries 10 marks. Derive the expression for total pressure (F) and centre of pressure (h*) for an	5
		inclined plane surface submerged in liquid	
	b)	A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way	
		that its plane makes an angle of 30° with the free surface of water. Determine the	5
		total pressure force and position of centre of pressure, when the upper edge is 2 m	
		below the free surface	
2		Explain any two mechanical pressure gauges with neat sketch.	10
3		Explain: Newton's law of viscosity. Explain the variation of viscosity with	2
		temperature for	
	a)	Liquids	4
	b)	Gas	4
4	a)	Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter,	
		when immersed in (i) water and (ii) mercury. The temperature of the liquid is	
		20°C and the values of surface tension of water and mercury at 20°C in contact	5
		with air are	
	٧	0.073575 N/m and 0.51 N/m respectively. The angle of contact for water is zero	
		and that for mercury is 130°. Take the density of water at 20°C as equal to 998	
		kg/m^3 .	
	b)	Determine the viscosity of a liquid having kinematic viscosity of 6 stokes and	5
		specific gravity 1.9.	
		PART B	
5		Answer any three questions. Each question carries 10 marks State Bernoulli's theorem. Derive and expression for Bernoulli's equation from	10
		Newton's law and state the assumptions made for such a derivation.	
6	a)	With the help of a neat sketch, explain Reynolds's experiment.	6

00000ME200051901

	b)	Explain the significance of Reynolds's number.	4
7	a)	A 30 cm x 15 cm venturimeter is inserted in a vertical pipe carrying water,	
0		flowing in the upward direction. A differential mercury manometer connected to	6
		the inlet and throat gives a reading of 20 cm. Find the discharge. Take $C_d = 0.98$.	
	b)	List the merits and demerits of orifice meter	4
8		Explain the effect of pressure gradient on boundary layer separation.	10
		PART C	
9		Answer any four questions. Each question carries 10 marks. With the help of neat sketches, explain the construction and working of a Pelton	10
		Wheel	
10		A jet of water of diameter 10 cm strikes a flat plate normally with a velocity of 15	
		m/s. The plate is moving with a velocity of 6 m/s in the direction of the jet and	
		away from the jet. Find:	
	a)	the force exerted by the jet on the plate	3
	b)	Work done by the jet on the plate per second	2
	c)	Power of the jet in kW	2
	d)	Efficiency of the jet	3
11	a)	With the help of neat sketches, explain draft tube and its types.	5
	b)	Explain: Draft –Tube Theory	5
12		The outer diameter of an impeller of a centrifugal pump is 400 mm and outlet	
		width is 50 mm. The pump is running at 800 r.p.m. and is working against a total	
1		head of 15 m. The vane angle at the outlet is 40° and the manometric efficiency is	
		75 %. Determine:	
	a)	Velocity of flow at outlet	4
	b)	Velocity of water leaving the vane	2
	c)	Angle made by the absolute velocity at outlet with the direction of motion at outlet	2
	d)	Discharge	2
13	a)	Classify reciprocating pumps.	5
	b)	With neat sketch, explain the working of a reciprocating pump with its main parts	5
14		Explain the following:	
	a)	Slip of a reciprocating pump	3
	b)	Air vessels and their purposes	4
	c)	Priming and its uses	3