Reg No.:______ Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree (R, S) Examination May 2024 (2019 Scheme)

Course Code: MAT 102

Course Name: VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

(2019 SCHEME)

Max. Marks: 100

Duration: 3 Hours

Marks

(3)

PART A

If $\bar{r} = e^{-t} \hat{i} + e^{t} \hat{j}$ is the position vector of a moving particle, find its velocity at t = 0. (3)

Answer all Questions. Each question carries 3 Marks

2 Find a unit vector in the direction in which $f(x, y) = 4x^3y$ increases most rapidly at (3)

P(-1, 1), and find the rate of change of f at P in that direction.

Evaluate $\int_c (x^2 - 3y) dx + 3x dy$, using Green's theorem, C being the circle (3)

 $x^2 + y^2 = 4.$

Determine whether the vector field $\bar{F}(x, y, z) = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ is free of sources (3)

and sinks. If it is not, locate them.

5 Find whether the solution set $\{x \sin x, x \cos x\}$ forms a basis or not. (3)

6 Solve y''' + y'' = 0. (3)

7 Find the Laplace Transform of $e^{-2t} \sin 5t$. (3)

8 Find the inverse Laplace Transform of $\frac{4}{(s+1)^4}$ (3)

Find the Fourier cosine integral of $f(x) = \begin{cases} 1, & \text{if } |x| < 1, \\ 0, & \text{if } |x| > 1 \end{cases}$ (3)

10 Find the Fourier sine transform of e^{-x} .

PART B

Answer one full question from each module, each question carries 14 marks

Module I

11 a If $\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = |\bar{r}|$, prove that $\nabla f(r) = \frac{f'(r)}{r}\bar{r}$. (7)

b Prove that the line integral $\int_{(-1,2)}^{(0,1)} (3x - y + 1) dx - (x + 6y + 2) dy$ is independent of the path. Also find its value. (7)

OR

0100MAT102052401

Find the work done by the force field $\bar{F}(x, y, z) = z \hat{i} + x \hat{j} + y \hat{k}$, where C is the curve $\bar{r}(t) = \sin t \hat{i} + 4 \sin t \hat{j} + \sin^2 t \hat{k}$, $0 \le t \le \frac{\pi}{2}$.

b Find $\nabla \times (\nabla \times \bar{f})$, if $\bar{f} = y^2 x \hat{\imath} - 3yz \hat{\jmath} + xz \hat{k}$ (7)

Module II

- 13 a Find the area of the ellipse $x = a \cos t$, $y = b \sin t$; $0 \le t \le 2\pi$ using line integrals. (7)
 - b Use Stoke's theorem to evaluate $\int_c \overline{F} \cdot d\overline{r}$, where $\overline{F}(x, y, z) = xy \,\hat{\imath} + x^2 \,\hat{\jmath} + z^2 \,\hat{k}$ and (7) C is the intersection of the rectangle $0 \le x \le 1, 0 \le y \le 3$, and the plane z = y.

OR

- 14 a Using Green's theorem evaluate $\int_c x \cos y \, dx y \sin x \, dy$ where C is the square with (7) vertices $(0,0), (0, \pi), (\pi, \pi)$, and $(\pi, 0)$.
 - b If $\overline{F} = x^3 \hat{\imath} + y^3 \hat{\jmath} + z^3 \hat{k}$, σ is the surface of the cylinder bounded by $x^2 + y^2 = 4$, z = (7)0, z = 4, find the outward flux of \overline{F} across σ using Divergence theorem.

Module III

- 15 a Solve the initial value problem $(D^2 + 4D + 5)y = 0$, y(0) = 2, y'(0) = -5. (7)
 - b Solve $y'' 6y' + 9y = \frac{e^{3x}}{x^2}$, by the method of variation of parameters. (7)

OR

- 16 a Solve by the method of undetermined coefficients, $y'' 4y' + 3y = \sin 3x$. (7)
 - b Solve $x^2y'' + 7xy' + 13y = 0$, y(1) = 0, y'(1) = 2. (7)

Module IV

- 17 a Solve the differential equation using Laplace transform, $y'' + 2y' + 6y = 6te^{-t}, \text{ given that } y(0) = 2, \ y'(0) = 5.$ (7)
 - b Find the inverse Laplace transform of (i) $\frac{2s+1}{s^2+2s+5}$ (ii) $\frac{e^{-s}}{s^2+2s+1}$. (7)

OR

- 18 a Using convolution find the inverse Laplace transform of $\frac{1}{s^2(s^2+a^2)}$. (7)
 - b Find the Laplace transform of (i) $sin^2 3t$ (ii) t^2 in $1 \le t \le 2$. (7)

0100MAT102052401

Module V

19 a Using Fourier integrals prove that $\int_0^\infty \frac{\cos\left(\frac{\pi\omega}{2}\right)}{1-\omega^2} \cos \omega x \, d\omega = \begin{cases} \frac{\pi}{2} \cos x, & |x| < \frac{\pi}{2} \\ 0, & |x| > \frac{\pi}{2} \end{cases}$ (7)

b Find the Fourier Cosine transform of $f(x) = \begin{cases} x, & \text{if } 0 < x < 2, \\ 0, & \text{if } x > 2 \end{cases}$ (7)

OR

Find the Fourier sine integrals of $f(x) = \begin{cases} \pi - x, & \text{if } 0 < x < \pi, \\ 0, & \text{if } x > \pi \end{cases}$ (7)

Find the Fourier sine transform of $f(x) = \begin{cases} 1, & \text{if } 0 < x < 1, \\ 0, & \text{if } x > 1 \end{cases}$ Hence deduce that $\int_0^\infty \frac{1 - \cos \omega}{\omega} \sin \left(\frac{\omega}{2}\right) d\omega = \begin{cases} \frac{\pi}{2}, & \text{if } 0 < x < 1, \\ 0, & \text{if } x > 1 \end{cases}$
