0200ECT202052401

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

B.Tech Degree S4 (R,S) / S4 (WP) (R) * S2 (PT) (S, FE) Examination May 2024

Course Code: ECT202

Course Name: ANALOG CIRCUITS

Max. Marks: 100

Duration: 3 Hours

7

7

CO

Rades

-		PART A (Answer all questions: each question carries 3 marks)	Mark
		(Answer all questions; each question carries 5 marks)	
1		Draw the output of a simple positive clamper circuit when input is 1kHz square	3
		wave with +5V and -10V amplitude.	
2		Design a Differentiator to differentiate +5 V pulse and +5 V square wave with	3
		3kHz frequency. Draw the input and output waveform.	
3		Draw the mid-frequency hybrid π ac equivalent circuit model of BJT and define	3
		parameters.	
4		Define Miller's theorem and discuss its significance on high frequency	3
		performance of amplifiers.	
5		Mention the region in which MOSFET acts as an amplifier? How will you ensure	3
		that MOSFET is biased in that region?	
6		In IC, Common source amplifier with diode connected load is preferred	3
		instead of resistive load. Justify the statement.	
7		Deduce the expression for closed loop gain (A _f) of Negative feedback Amplifier.	3
8		Crystal Oscillator provides good frequency stability. Justify the statement.	3
9		Design a short-circuit current limiting circuit to limit I _L max=3A.	3
10		Discuss about the cross over distortion in power amplifiers. How can it be	3
	*	eliminated?	а. Ка
		DADT D	

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

- 11 a) Explain the working of Slicer circuit. Design a slicer circuit to clip sine wave at +3V and +6V clipping level. Draw the transfer characteristics.
 - b) Derive the design equation of RC Integrator. Show that output voltage is directly proportional to the integral of input voltage.

0200ECT202052401

- 12 a) In an amplifier which uses fixed bias, the transistor is operating at $V_{CE}=3$ V and $I_C=1.5$ mA. The β of the transistor is 150 and Supply voltage, $V_{CC}=6$ V. Design for R_B and R_C . Draw the load line and mark the Q point. If the transistor is replaced with a new one with $\beta=200$, Obtain the new operating point. Assume $V_{BE}=0.7$ V..
 - b) Draw the RC Coupled amplifier circuit and discuss the function of each 6 components in the circuit.

Module -2

- 13 a) Derive small signal voltage gain, input and output resistance of CE RC coupled8 amplifier at midfrequency.
 - b) Why the voltage gain of RC coupled amplifier falls at low and high frequencies? 6

9

5

5

9

7

7

- 14 a) Design an RC coupled amplifier with Av=30. Let $V_{CC}=12V$, $I_{CQ}=2mA$, $\beta dc =250$. Choose Si Transistor.
 - b) Distinguish between DC and AC load line

Module -3

- 15 a) Derive the small signal voltage gain, input and output resistance of Common 7 source amplifier with diode connected load.
 - b) In an Enhancement MOSFET Drain feedback bias circuit, MOSFET threshold 7 voltage (V_T)=2V, I_{D(ON)}=6mA for V_{GS(ON)}=5V, R_D=1KΩ, R_G=1.5MΩ, V_{DD}=15V. Determine the value of operating point.
- 16 a) What are the effects of cascading in gain and bandwidth of Amplifier. With 7 relevant equations explain the effects.
 - b) Design two stage cascade amplifier with overall voltage gain=900. Let $V_{CC}=12V$, 7 $I_{CQ}=2mA$, $\beta dc = 250$, Choose Si Transistor.

Module -4

- 17 a) Discuss the working principle of LC oscillators.
 - b) Deduce the expression for frequency of oscillation of Wien Bridge Oscillator.
- 18 a) Show that negative feedback amplifier provides stability in gain when compared to basic amplifier (without feedback).
 - b) Draw the circuit diagram of Voltage shunt feedback amplifier and Voltage series feedback amplifier, each circuit deduce the expression for feedback factor(β).

0200ECT202052401

Module -5

a) Explain the working of current boosting circuit. Draw the circuit diagram of series
9 voltage regulator with current boosting circuit.

5

8

See.

7

- b) Draw the circuit diagram of +5V, 500mA Regulated DC Power supply.
- 20 a) Draw the circuit of complementary symmetry class B push pull power amplifier and explain its operation. What are the advantages of complementary symmetry amplifiers when used at output stages?
 - b) What do you mean by Harmonic distortion? Define Second Harmonic distortion 6 and Total Harmonic distortion (THD).

1 4

1