0200MAT204122303

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

B.Tech Degree S4 (R,S) / S4 (PT) (R,S) / S2 (PT) (S,FE) / S4 (WP) (R) Examination May

Course Code: MAT204

Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS Max. Marks: 100 Duration: 3 Hours

PART A

	(Answer all questions; each question carries 3 marks)	Marks							
1	Determine the binomial distribution for which mean is 4 and variance is 3.	3							
2	X follows a Poisson distribution with mean 6. Find $P(X = 1)$, Variance (X).	3							
3	If X has a Uniform Distribution in $(-3,3)$, find $P(X-2 < 2)$.	3							
4	The joint probability density of a two-dimensional random variable is								
	$f(x,y) = \begin{cases} \frac{xy}{96}, & 0 < x < 4, & 1 < y < 5\\ 0, & otherwise \end{cases}$. Find $P(1 < X < 2, 2 < Y < 3)$.	3							
5	Define stationary random process. Define two types of stationary random	3							
	process.								
6	A random process $X(t) = A \cos \omega t$, $t \ge 0$ where ω is a constant and A is								
	uniformly distributed in $(0,3)$. Determine $E[X(t)]$.	3							
7 Use trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five subintervals.									
8	Using Newton Raphson method find the positive root of the equation								
	$x^3 - 24 = 0$ that lies between 2 and 3 correct to three decimal places.	3							
9.	Write the normal equations for fitting the curve $y = a + bx^2$.								
10 🖕	Given $\frac{dy}{dx} = 1 - y$, $y(0) = 0$. Use Euler's method with $h = 0.1$, to compute the .								
		3							

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

7

11 a) Let X be a random variable taking values -1,0 and 1 such that P(X = -1) = 2P(X = 0) = P(X = 1). Find (i) the *pmf* of X (ii) the mean of (2X - 5).

value of y(0.2).

b) It is known that 2% of the bolts produced by a company are defective. The bolts are supplied in boxes of 200 bolts. What is the probability that a randomly

0200MAT204122303

chosen box contains not more than 5 defective bolts? In a consignment of 1000 7 such boxes how many can be expected to have more than 5 defective bolts? (Use Poisson distribution)

12 a) A random variable X has the following probability distribution:

x	-2	-1	0	1	2	3	
f(x)	0.1	15k ²	0.2	2k	0.3	3k	7

7

7

7

7

(i) Find the value of k (ii) the mean and variance of X.

b) Derive the mean and variance of Poisson distribution.

Module -2

- 13 a) A random variable X has the following probability density function f(x) = kx(2 - x), 0 < x < 2. Find (i) the value of k (ii) the mean (iii) variance
 - b) The marks obtained by students in an intelligence test follow normal distribution with mean 45 and standard deviation 25. Find the percentage of students who 7 scored marks (i) more than 80 (ii) between 30 and 70 (iii) below 35.
- 14 a) If the mileage, which a car owner gets with a certain kind of radial tyre, is a random variable having an exponential distribution with mean 40,000 km. Find the probabilities that one of these tyres will last (i) at least 20,000 km (ii) at most 7 30,000 km.
 - b) A distribution with unknown mean μ has variance 1.5. Use Central Limit
 Theorem to find, how large a sample should be taken from the distribution in 7
 order that the probability that the sample mean will be in the 0.5 of the population mean is 0.95.

Module -3

- a) Let {X(t) = A cos ωt + B sin ωt, t > 0} be a random process where A and B
 are independent random variable following normal distribution with mean 0 and 7
 variance 4. Check whether {X(t)} is WSS.
 - b) Find the power spectral density function of the WSS process whose autocorrelation function is $A^2 e^{-2 \propto |\tau|}$ where A and \propto are constants.
- 16 a) If $\{X(t)\}$ is a random process with mean 3 and $R(t_1, t_2) = 9 + 4e^{-\left(\frac{|t_1-t_2|}{5}\right)}$. Find (*i*)V(X(5)) (*ii*)V(X(8)) (*iii*)Cov(X(5), X(8)).
 - b) Show that the sum of two independent Poisson processes is also a Poisson 7 process.

0200MAT204122303

Module -4

7

7

7

7

7

7

7

- 17 a) Find the root of the equation $\cos x xe^x = 0$ that lies between 0 and 1, using Regula-Falsi method, correct to four decimal places.
 - b) Calculate y(0.015) using Newton's forward interpolation formula

x	0.01	0.02	0.03	0.04	0.05
У	1.2	2.5	3.6	4.6	5.3

18 a) Using Lagrange's interpolation, find the value of y(8), given y(0) = 18, y(1) = 42, y(7) = 57, y(9) = 90.

b) Evaluate $\int_0^{0.6} \frac{dx}{\sqrt{1+x}}$ with n = 6.

Module -5

- 19 a) Using Gauss-Seidel iteration method, find an approximate solution to the following system of equations correct to 4 decimal places. 8x - 3y + 2z = 20, 4x + 11y - z = 33, 6x + 3y + 12z = 36
 - b) Using Runge Kutta method of order 4, find y(0.1) given, y' = x + y, y(0) = 1by taking h = 0.1.
- 20 a) Fit a second-degree parabola of the form $y = a + bx + cx^2$ to the following data

x	0	1	2	3	4
у	1.2	1.7	2.1	2.8	5.9

b) Solve $\frac{dy}{dx} = x^2(1+y)$ for x = 1.4 using Adams-Moulton Method, given

y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548 and y(1.3) = 1.979.
