1200ECT302052404

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIV

B.Tech Degree S6 (R, S) / S4 (RT) (R, S) Examination May 2024 (20

Course Code: ECT302

Course Name: ELECTROMAGNETICS

(Smith Chart should be supplied on request)

Duration: 3 Hours Max. Marks: 100 PART A Marks Answer all questions, each carries 3 marks. Convert the point A (2, -1,-3) to cylindrical coordinate system and spherical (3)coordinate System. (3)Give the physical significance of Curl. (3)State the Maxwell's equation in integral form based on the following law -"Electromagnetic force induced in a circuit is equal to the rate of change of magnetic flux linking the circuit". (3) Define Magnetic Vector Potential and give relationship between Scalar and Magnetic Vector Potential (3) 5 List the Maxwell's equations in differential form for time varying fields. (3) State Brewster's law. Calculate the Brewster angle for a quartz of dielectric 6 constant 2.3 Find the power of a wave with electric field intensity of 3 units in air. 7 (3) Describe Linear, Circular and Elliptical Polarization. (3) 8 (3)Explain the terms 'Propagation constant' and 'Characteristic impedance' of a 9 transmission line. Describe how line section of a transmission line is used as circuit elements in (3)10 high frequency applications.

PART B

Answer one full question from each module, each carries 14 marks.

Module I

1 a)	Explain Gauss Law and State Divergence theorem.	(6)
------	---	-----

b) Find the total electric flux ϕ_E through the surface of a cube with side length a (8) cantered at the origin considering the electric field E given by the expression $\mathbf{E} = 2\mathbf{x}^2\hat{\mathbf{a}}_{\mathbf{x}} + 3\mathbf{y}\hat{\mathbf{a}}_{\mathbf{v}} - 4\mathbf{z}\hat{\mathbf{a}}_{\mathbf{z}}$

1

2

3

4

1

1200ECT302052404

OR

12	a)	Derive the equation for Poisson's and Laplace equation.	(6)
	b)	Determine whether the following potential fields satisfy Laplace equation (i) $V = x^2 - y^2 + z^2$ (ii) $V = \rho \cos \phi + z$	(8)
		Module II	
13	a)	Derive the boundary conditions of static magnetic field at the interface of two	(7)
		different magnetic medium.	
	b)	Derive the expression for Capacitance of a Coaxial Cable	(7)
		OR	

- 14 a) Derive the expression for equation of continuity. Describe how Ampere's law (10) is modified by the equation of continuity.
 - b) If the magnetic field intensity H in a region is, $(3y z)\hat{a}_2 + 2x\hat{a}_y$, Find the (4) current density at the origin.

Module III

- 15 a) A lossy dielectric is characterised by $\varepsilon_g = 2 \cdot 5$, $\mu_g = 4$ and $\sigma = 10^{-3}$ U/m at (10) 10MHz. Let $E_s = 20e^{-\gamma z} a_y$ V/m at z=0, Find the following parameters at
 - 10⁸ Hz for a uniform plane wave
 - (a) Attenuation constant
 - (b) Phase constant
 - (c) Velocity of propagation
 - (d) Wavelength
 - (e) Intrinsic impedance
 - (f) Magnetic field intensity H_s
 - (g) Electric field intensity E(x=2, y=3, z=4, t=10 ns)
 - b) Assume that a microwave oven operate at 2.45 GHz. Let $\sigma = 1.1 \times 10^6 \text{ U/m}$ (4) and $\mu_r = 600$ for the stainless steel interior, find the depth of penetration.

OR

- a) Derive the expression for reflection and transmission coefficients when a (8) uniform plane electromagnetic wave is incident obliquely on a dielectric surface with parallel polarization.
 - b) Assuming free space conditions derive wave equations for field E and H from (6) Maxwell's equations.

1200ECT302052404

Module IV

- 17 a) Derive the expression of input impedance due to a transmission line terminated by (7)
 a load ZL
 - b) Show that the power transferred through a given area in the field is determined (7) by the combined influence of the electric and magnetic fields, integrated over a closed surface, indicating the flow of electromagnetic energy across that surface.

OR

- 18 a) Derive standard equation of two-wire transmission line. (7)
 - b) A plane-polarized electromagnetic wave $E = E_0 \sin k(vt z)a_x$, (7) $H = H_0 \sin k(vt - z)a_y$ travels in free space.
 - (i) Show that Poynting's vector is given by $P = c\epsilon_0 E_x^2$, where c is velocity of light in free space
 - (ii) Find the Average value of Poynting's vector P_{av}
 - (iii) Determine the expression for E_0
 - (iv) Find the expression for H_0

Module V

- 19 a) Obtain the input impedances for open circuited and short-circuited transmission (6) lines. How they relate to characteristic impedance of the line.
 - b) A standard air-filled rectangular waveguide with dimensions a = 5 8.636 cm, (8)
 b = 5 4.318 cmi s fed by a 4 GHz carrier. Determine whether TE₁₀ mode and TM₁₁ mode will be propagated. If so, calculate the phase velocity and the group velocity for each mode.

OR

- 20 ° a) The 0.1 λ length transmission line has a characteristic impedance of 50 Ω is (8) terminated by load impedance of $Z_L = 5+j25 \Omega$. Using Smith Chart, determine
 - (i) Impedance at 0.1λ
 - (ii) VSWR
 - (iii) Reflection Coefficient and Angle of reflection coefficient

b) What is meant by the dominant mode? Explain the TE and TM modes in a (6) rectangular waveguide.