Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERS

Sixth Semester B.Tech Degree (R,S) Examination May 2024 (2019 Scheme

Course Code: AIT304 Course Name: ROBOTICS AND INTELLIGENT SYSTEM

Max. Marks: 100

Duration: 3 Hours

PART A Answer all questions, each carries 3 marks. Marks Explain cylindrical and spherical robot configurations. (3) State the three laws of a robot and give its applications. (3) Define the term sensor, and differentiate the same from the transducer. (3)Explain Dynamic range, Linearity and Resolution of a Sensor. (3)Differentiate between holonomic and nonholonomic robots. (3)Briefly Describe Sensing, Pre-processing, Segmentation, (3) Identify the 2 mobile robot localization problems. (3)How will you represent the error model for odometric position estimation (3) Write short notes on Potential field based path planning (3) (3)

PART B

Answer one question from each module, each carries 14 marks.

Module I

- Explain the four basic robot configurations classified according to the coordinate (8) 11 a) system.
 - Draw and Explain different types of grippers used in mobile robots **b**) (6)

OR

- 12 Explain the general features of wheeled, legged and aerial robots. (9) a)
 - Assume an object of mass 140 kg is to be lifted up with an acceleration of 10 (5) b) m/s2. Calculate the gripper force required for the operation, if coefficient of friction between contact surfaces is 0.2, number of fingers in gripper is 2 and acceleration due to gravity is 9.8 m/s2

1

2

3

- 4
- 5
- 6
- 7
- 8
- 9
- 10 Compare any two traversal algorithms.

1200AIT304052402

Module II

13	a)	Explain the working principle of Hall effect sensor and any one application of	(6)
		the same.	
	b)	Draw and Explain position and velocity internal sensors	(8)
		OR	
14	a)	Briefly describe the speed and direction control of DC motor using H Bridge and	(6)
-		PWM	
	b)	Differentiate Stepper Motor and Servomotor concerning the construction and	(8)
		applications.	
		Module III	
15	a)	Outline the seven stages of robot vision.	(14)
		OR	
16	a)	Derive the kinematic model of a differential drive mobile robot.	(7)
	b)	What is an Omni directional robot? Explain two configurations to set up an	(7)
	•	Omni directional robot.	
		Module IV	
17	a)	How Kalman Filter method can be used in localization of mobile robots	(7)
	b)	Derive error model for odometric position estimation.	(7)
		OR	
18	a)	How the probabilistic map based localization can be achieved? And suggest the	(10)
3		best filtering method for achieving the same.	
	b)	List and explain the Decomposition strategies used in map representation.	(4)
		Module V	
19	a)	Explain Dijkstra's algorithm with a suitable example.	(7)
	ъ́)	Compare and contrast local and global Dynamic window approaches in Obstacle	(7)
		avoidance.	
		OR	
20	a)	Discuss the concept of Modularity for code reuse and sharing.	(8)
	b)	Why does SLAM work better with wheel odometer data available?	(6)

-i¥