1200RAT306012402

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERS

Sixth Semester B. Tech Degree (R,S) Examination May 2024 (2019 Scheme

Course Code: RAT306 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100

Duration: 3 Hours

PART A Marks Answer all questions, each carries 3 marks. Check whether the signal, $x(t) = 2\cos(5t + 1) - \sin 4t$ is periodic or not. If (3) periodic, determine the fundamental period (3) State the difference between causal and non-causal system. Write the expression for the trigonometric Fourier series coefficient (3)(3) Find the Laplace transform of $x(t) = [1 + sin2t \cos 2t] u(t)$ (3)State the convolution property of Z-Transform Prove that $u(n) \stackrel{ZT}{\leftrightarrow} \frac{z}{z-1} = \frac{1}{1-z^{-1}}; ROC; |z| > 1$ (3) (3) List any three properties of DFT Obtain the circular convolution of the following sequence $x(n) = \{1,2,1\}$; (3) $h(n) = \{1, -2, 2\}$ Draw the basic butterfly diagram for DIT algorithm (3) 9 What are the different types of structures for realization of IIR systems? (3) 10 PART B Answer any one full question from each module, each carries 14 marks.

Module I

Determine whether the following system is static, time invariant, linear and causal. (8) 11 a) (x and y denote input and output respectively). Give explanation for each.

$$y(t) = t^2 x(t) + x(t-2)$$

(6) Check whether the following signals are energy or power signals. **b**)

i)
$$x(t) = e^{-a|t|}; a > 0$$

x(t) = tu(t)ii)

OR

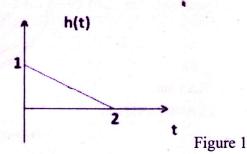
1

2

3

4

5


6

7

8

1200RAT306012402

12 a) Find the output of an LTI system with impulse response h(t) to the input x(t). (8) Given x(t) = u(t) - u(t-2) and h(t) is shown in Figure 1

b) Sketch the signals

(i) y(t) = u(0.5t + 2)(ii) y(n) = u(n + 4) - u(n - 2)

Module II

(6)

13	a)	Sketch and find the magnitude and phase spectra of the following signals	(7)

(1)
$$x(t) = e^{-at}u(t); a > 0$$

(ii)
$$x(t) = e^{at}u(-t); a > 0$$

(iii) $x(t) = e^{-a|t|}; a > 0$

Using Fourier Transform

b) Find the Laplace transform and ROC of the two-sided signal (7)

$$x(t) = 3e^{-2t}u(t) + 4e^{3t}u(-t)$$

OR

14 a) State and derive the sampling theorem for low pass signal with the conditions for (14) regular intervals of sampling frequency, $\omega_s > 2\omega_n, \omega_s = 2\omega_n, \omega_s < 2\omega_n$ over the frequency spectrum.

Module III

15	a)	Find the Z-transform of	(10)
		(i) $y(n) = x(n-1)u(n)$	
		(ii) $y(n) = x(n+1)u(n)$	
	b)	Prove that, for causal sequence, the ROC is the exterior of a circle of radius r.	(4)
•		OR	
16	a)	Prove that the sequences	(10)
		a) $r(n) = a^n u(n)$	

b)
$$x(n) = -a^n u(-n-1)$$

Have the same X(z) and differ only in ROC. Also plot their ROCs

1200RAT306012402

b) List any four properties of Z-transform

Module IV

(4)

(4)

(14)

17 a) Determine the output response y(n) if $h(n) = \{1,1,1,\}$; $x(n) = \{1,2,3,1\}$ by (10) using linear convolution method

b) Discuss the relationship between DFT and z-transform.

OR

18 Find the output y(n) of a filter whose impulse response is h(n) = {1,1,1} and (14) input signal x(n) = {3,-1,0,1,3,2,0,1,2,1} using (i)overlap-save method (ii)overlap-add method

Module V

19 Compute the 8-point DFT of the sequence

$$x(n) = \begin{cases} 1, & 0 \le n \le 7\\ 0, & otherwise \end{cases}$$

Using DIT and DIF Radix-2 FFT algorithm

OR

20 Obtain the direct form I, direct form II, cascade and parallel form realisation for (14) the system

y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)
