01000MA101062302

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech Degree S1 (S,FE) S2 (S,FE) Examination May 2024 (2015 Scheme

Course Code: MA 101 **Course Name: CALCULUS**

Max. Marks: 100

Duration: 3 Hours

		PART A	
		Answer all Questions. Each question carries 5 Marks	Marks
1	a)	Determine whether the series $\sum_{k=1}^{\infty} \left(\frac{-2}{3}\right)^{k+1}$ converges. If so find its sum.	(2)
	b)	Use alternating series test, determine whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} e^{-k}$	(3)
		converge or not.	
2	a)	Find the slope of the surface $z = xe^{-y} + 5y$ in the x-direction at the point (4, 0).	(2)
	b)	Show that the function $f(x, y) = e^x siny + e^y sinx$ satisfies the Laplace's	(3)
		equation $f_{xx} + f_{yy} = 0$.	
3	a)	Find the gradient of $f(x, y) = x^2 e^y$ at the point (-2, 0)	(2)
	b)	Find the velocity and speed of a particle moving along the curve $\vec{r}(t) = e^t \hat{i} + e^t \hat{i}$	(3)
		$e^{-t}\hat{j}$	
		at time $t = 0$.	
4	a)	Evaluate $\int_2^4 \int_0^1 x^2 y dx dy$.	(2)
	b)	Find the area enclosed by the lines $x = 0$, $y = 0$, and $x + y = 1$	(3)
5	a)	Find the value of 'a' so that the vector $\vec{F} = (x+3y)\hat{\imath} + (y-2z)\hat{\jmath} + (x+az)\hat{k}$	(2)
		is solenoidal.	
	b)	Evaluate $\int_{c}^{\Box} y dx + x dy$ where C is the path $y = x^2$ from (0, 0) to (1, 1).	•(3)
6	a)	Determine whether the vector field $\vec{F} = yz \hat{i} + xz \hat{j} + xy \hat{k}$ is free of sources and	(2)
		sinks.	
	b)	Use divergence theorem to find the outward flux of the vector field	(3)
		$\vec{F} = z^2 \hat{\imath} - x^3 \hat{\jmath} + y^3 \hat{k}$ across the surface of the sphere $x^2 + y^2 + z^2 = 1$	
X		PART B	
	Module I Answer any two questions Fach question carries 5 Marks		
7		$\sum_{k=1}^{\infty} \frac{(k+1)!}{k!} \sum_{k=1}^{\infty} \frac{(k+1)!}{k!}$	(5)
'		Test the convergence of (i) $\sum_{k=1}^{\infty} \frac{1}{2!k! 2^k}$ (ii) $\sum_{k=1}^{\infty} \frac{1}{k! 2^k}$	

1

01000MA101062302

Find the Taylor series expansion of $f(x) = \sin \pi x$ about $x = \frac{1}{2}$. (5)

9

8

Find the radius of convergence and interval of convergence of (5) $\sum_{k=1}^{\infty} (-1)^{k+1} x^k$

Module II

Answer any two questions. Each question carries 5 Marks

10	Find $\frac{dz}{dt}$ using chain rule, if $z = 3x^2y^3$ where $x = t^4$, $y = t^3$.	(5)
11	Find the local linear approximation of $f(x, y, z) = xyz$ at the point (1, 2, 3).	(5)
12	Locate all relative extrema and saddle points of $f(x, y) = 2xy - x^3 - y^2$.	(5)

Module III

Answer any two questions. Each question carries 5 Marks

13	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = \vec{r} $ then prove that $\nabla r^n = nr^{n-2}\vec{r}$.	(5)
14	Find the equation of the tangent plane and parametric equations of the normal	(5)

14	Find the equation of the tangent plane and parametric equations of the normal	
	line to the surface $x^2 + y^2 + 4z^2 = 12$ at the point (2, 2, 1).	

15	Suppose that a particle moves through 2-space so that its position vector	(5)
	$\vec{r}(t) = (t^2 - 2t)\hat{i} + (t^2 - 4)\hat{j}$. Find the scalar tangential component and scalar	
	normal component of acceleration at time $t = 1$.	

Module IV

Answer any two questions. Each question carries 5 Marks

16

19

Using polar co-ordinates, evaluate $\iint_R^{\mathbb{I}_{\mathcal{A}}} e^{-(x^2 + 1)^2}$	$(y^2) dA$ where R is the circle	(5)
$x^2 + y^2 = 1$		

17	By reversing the order of integration, evaluate $\int_0^{\pi} \int_x^{\pi} \frac{\cos y}{y} dy dx$	(5)
18	Find the volume of the solid within the cylinder $x^2 + y^2 = 4$ and between the	(5)
	planes $z = 0$ and $x + z = 1$.	

Module V

Answer any three questions. Each question carries 5 Marks

- Find the work done by the force field $\vec{F} = xy\,\hat{\imath} + yz\,\hat{\jmath} + xz\,\hat{k}$ on a particle that (5) moves along the curve x = t, $y = t^2$, $z = t^3$ from t = 0 to t = 1
- 20 Determine whether $\vec{F} = e^x \cos y \,\hat{\imath} e^x \sin y \,\hat{\jmath}$ is conservative. If so, find a (5) potential function for it.
- 21 Evaluate $\int_{C}^{\square} x^{2} dx + xy dy$ along the curve given by x = 2cost, y = 2sint, (5) $0 \le t \le \pi$

01000MA101062302

22	Find $\nabla . (\nabla \times \vec{F})$ and $\nabla \times (\nabla \times \vec{F})$ if $\vec{F} = x \hat{\imath} + xy \hat{\jmath} + xyz \hat{k}$	(5)
23	Show that $\int_{(0,0)}^{(3,2)} 2xe^y dx + x^2 e^y dy$ is independent of the path. Also find the	(5)
	value of the integral.	
	Module VI	
	Answer any three questions. Each question carries 5 Marks	
24	Use Green's theorem to evaluate $\int_c^{\Box} 2xy dx + (x^2 + x) dy$ where C is the	(5)
	triangle with vertices $(0, 0)$ $(1, 0)$ and $(1, 1)$	
25	Apply Stoke's theorem to evaluate $\int_{c}^{\Box} \vec{F} \cdot d\vec{r}$ where $\vec{F} = x^{2}\hat{\imath} + 4xy^{3}\hat{\jmath} + y^{2}x\hat{k}$	(5)
	where C is the rectangle $0 \le x \le 1$, $0 \le y \le 3$ in the plane $z = y$.	
26	Evaluate the surface integral $\iint_{\sigma}^{\Box} ds$ where σ is the part of the plane	(5)
	x + y + z = 1 that lies in the first octant.	
27	Apply Green's theorem to evaluate $\int_c^{\Box} x \cos y dx - y \sin x dy$ where C is the	(5)
	boundary of the square formed by $x = 0$, $x = \pi$, $y = 0$, $y = \pi$.	
28	Use divergence theorem to find the outward flux of the vector field	(5)
	$\vec{F} = xy \hat{i} + yz \hat{j} + xz \hat{k}$ across the surface of the cube bounded by the planes	
	x = 0, x = 2, y = 0, y = 2, z = 0, z = 2.	