Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

B.Tech Degree S1 (S,FE) S2 (S,FE) Examination May 2024 (201) Scheme

Course Code: MA 102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100 **Duration: 3 Hours** PART A Answer all Questions. Each question carries 3 Marks Marks Find the wronskian of e^{2x} and e^{3x} (3) Solve the differential equation y''' + y = 0. (3) Find the particular integral of $(D^2 + 3D + 2)y = 4$. (3) Solve y'' + 9y = sin3xIf f(x) is a periodic function with period 2π defined in $[-\pi, \pi]$. Write the Euler's (3)formulas a_0, a_n, b_n Find the Fourier sine series of the function f(x) = x in the interval $(0, \pi)$ (3) Find the differential equation of all spheres whose centre lies on the z axis (3)Solve $p - q = \log(x + y)$ Solve one dimensional wave equation for k < 0. Write any three assumptions in deriving one dimensional wave equation. (3) Find the steady state temperature distribution in a rod of length 10cm if the ends (3) are kept at 50°C and 100°C. Write down the possible solutions of one dimensional heat equation. (3)PART B Answer six questions, one full question from each module **Module I** Show that the functions e^x and xe^x are linearly independent. Hence form an ODE a) (6) for the given basis $\{e^x, xe^x\}$ Find the general solution of $(D^4 - 81)y = 0$ **b**) (5) OR a) Solve the initial value problem: (6)

- y'' + y' + 0.25y = 0, y(0) = 3, y'(0) = -3.5
- b) Show that the functions x^3 and x^5 are basis of solutions of the ODE (5) $x^2y'' - 7xy' + 15y = 0.$

A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

01000MA102062302

Module II

13	a	Solve $\frac{d^2y}{dx^2} + 4y = tan 2x$ using method of variation of parameters.	(6)
	b	Find the P.I of $(D^3 - 3D^2 + 4)y = e^{2x}$	(5)
		OR	(0)
16	a)	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = 12 \log x$	(6)
	b)	Solve $(D^2 + 2D + 1)y = x^3$	(5)
		Module III	
-17	¢	Express $f(x) = x $ as a Fourier series in the range $-\pi < x < \pi$. Hence show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$ OR	(11)
18	a)	Obtain the Fourier series expansion of $f(x) = x + x^2$, $-\pi < x < \pi$	(6)
	b)	Find the half range Fourier cosine series of $f(x) = (x - 1)^2$, $0 < x < 1$.	(5)
		Module IV	
19	a)	Solve $(y^2 + z^2)p - xyq + xz = 0$	(6)
	b)	Solve $r - 4s + 4t = e^{2x-y}$	(5)
•	* ¹	OR	
20	a)	Solve $(D^2 + DD' - 6{D'}^2)z = \sin(2x + y)$	(6)
	b)	Form the PDE by eliminating arbitrary functions from $z = f(x) + e^y g(x)$	(5)
		Module V	
21	a)	A tightly stretched homogeneous string of length L with its fixed ends at x=0 and x=L executes transverse vibrations. Motion starts with zero initial velocity by displacing the string into the form $f(x) = k(x^2 - x^3)$. Find the deflection $u(x, t)$	(10)
٠		at any time t.	
		OR	
22		A string of length <i>l</i> is initially at rest in the equilibrium position and each of its points is given the velocity $u = u_0 sin^3 \left(\frac{\pi x}{l}\right), 0 < x < l$. Determine the displacement function $u(x, t)$.	(10)

Module VI

A rod of 30 cm long has its ends A and B kept at 20° C and 80° C respectively (10) until steady state temperature prevail. The temperature at each end is then suddenly reduced to zero temperature and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

2

23

01000MA102062302

24

Find the temperature distribution in a bar of length π whose surface is thermally (10) insulated with end points at 0°C. The initial temperature distribution in the rod is

$$u(x,0) = \begin{cases} x, & 0 \le x \le \pi/2 \\ \pi - x, & \pi/2 \le x \le \pi \end{cases}$$