Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S,FE) / S1 (PT) (S,FE) Examination June 2024 (2015 Scheme)

Course Code: CS203

Course Name: SWITCHING THEORY AND LOGIC DESIGN

PART A

Max. Marks: 100

Duration: 3 Hours

	Answer all questions, each carries3 marks.	Marks
1	Convert the following a). $(12.0625)_{10} = (2000)_2 (3A7)_{16} = (2000)_8$	3
2	Perform the following operations a). $(547)_8 + (356)_8$ b). $(10010)_2 \ge 1010$	3
3	State and prove De-Morgan's theorem	3
4	Draw a 3 input Exclusive-OR gate with truth table	3

PART B

Answer any two full questions, each carries9 marks.

a)	Explain the format of single precision floating point number with example	4
b)	Simplify the Boolean function by tabulation method.	5
	$F(w,x,y,z) = \sum m(0,1,2,8,10,11,14,15)$	
a)	Convert the hexadecimal number F3A7C2 to binary and octal	4
b)	P.T AB+(AC)'+AB'C(AB+C)=1	3
c)	P.T AB+A'C+BC=AB+A'C	2
a)	Simplify the Boolean function F (P,Q,R,S)= $\sum(0,1,2,6,8,9,10)$	4
b)	What are the steps needed to obtain the canonical SOP form. Give an example	3
c)	Write ashort notes on ASCII	2
	 a) b) a) b) c) a) b) c) 	 a) Explain the format of single precision floating point number with example b) Simplify the Boolean function by tabulation method. F(w,x,y,z)=∑m(0,1,2,8,10,11,14,15) a) Convert the hexadecimal number F3A7C2 to binary and octal b) P.T AB+(AC)'+AB'C(AB+C)=1 c) P.T AB+A'C+BC=AB+A'C a) Simplify the Boolean function F (P,Q,R,S)=∑(0,1,2,6,8,9,10) b) What are the steps needed to obtain the canonical SOP form. Give an example c) Write ashort notes on ASCII

PART C

Answer all questions, each carries3 marks.

8	Differentiate combinational circuit and sequential circuit	3
9	Give the excitation table of J K Flip Flop	3
10	How many 2X1 MUX are needed to construct a 4X1 MUX. Draw the logic	3
	diagram	
11	Explain race around condition	3

•

08000CS203122004

PART D

Answer any two	full questions,	each carries 9 marks.
----------------	-----------------	-----------------------

12	a)	Design a full adder circuit	5
	b)	Explain the working of Parallel adder	4
13	a)	What is Edge triggering	3
	b)	Explain BCD Adder with diagram	6
14	a)	Design a 4 bit binary to Gray code converter	7
	b)	Define state diagram	2

PART E

Answer any four full questions, each carries 10 marks.

15		Describe the working of Programmable Logic Array (PLA) with a block diagram	10
16		Explain the different types of shift registers with diagram	10
17	a)	Compare Static RAM and Dynamic RAM.	5
	b)	Write a note on registers	5
18	a)	What is meant by Hardware Description Languages? Give examples.	5
	b)	Compare synchronous and asynchronous counters	5
19	a)	Explain the different types of ROMs	3
	b)	Draw and explain 4 bit Johnson counter.	7
20		Explain the algorithm for floating point addition.	10
