08000EC203122002

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSI

B.Tech Degree S3 (S,FE) / S1 (PT) (S,FE) Examination June 2024 (20) Scheme

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC, AE)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

a)	Explain Fermi	Dirac	distribution	function.	Plot	the	Fermi	Dirac	distribution	(8)
	function for intrinsic and extrinsic semiconductors.									

- b) What is Einstein Relation? Derive the expression.
- An unknown semiconductor has Eg = 1.1 eV and Nc = Nv. It is doped with 10^{15} (8) 2 a) cm^{-3} donors, where the donor level is 0.2 eV below Ec. Given that E_F is 0.25 eV below Ec, calculate ni and the concentration of electrons and holes in the semiconductor at 300K.
 - (7)b) Explain diffusion process in a semiconductor and derive the expression for diffusion current density.
- (8) Define Hall effect. Derive the expression for mobility and carrier concentration 3 a) in terms of Hall voltage.
 - b) Prove that under steady state carrier injection, the injected excess carrier (7) concentration is an exponentially decreasing function of distance.

PART B

Answer any two full questions, each carries 15 marks.

- Derive the expression for contact potential and depletion region width of an abrupt (9) 4 a) PN junction at equilibrium.
 - (6) Distinguish between Zener and Avalanche breakdown mechanisms. b)
- Draw the distribution of charge carriers, potential, electric field and charge density (9) 5 a) within the transition region of an abrupt pn junction.
 - b) A silicon abrupt p-n junction at 300K has $N_A = 10^{16}$ cm⁻³ on p-side and $N_D = 10^{14}$ (6)cm⁻³ on n-side. Area of cross-section is 10⁻⁵ cm². Calculate the junction capacitance at equilibrium. Assume ni for silicon at 300K as 1.5×10^{10} cm⁻³

Page 1 of 2

1

Marks

(7)

08000EC203122002

6	a)	Derive Ideal Diode equation and list the assumptions.	(9)						
	b)	With the help of energy band diagrams, explain metal- n type Schottky contact.	(6)						
		PART C							
Answer any two full questions, each carries 20 marks.									
7	a)	Illustrate the minority carrier distribution in a PNP transistor. Plot and mark the	(10)						
-		minority carrier concentrations in the three regions.							
	b)	Draw and explain the structure of FinFET	(5)						
	c)	Draw and explain the transfer characteristics of an enhancement type MOSFET	(5)						
8	a)•	Explain Early effect. What is its effects on Ic, IB, α and β of a transistor?	(5)						
	b)	Define the basic performance parameters of BJTs.	(5)						
	c)	With the help of necessary band diagrams, explain equilibrium, accumulation,	(10)						
		depletion and inversion stages of a MOS capacitor.							
9	a)	For a pnp BJT with $N_E < N_B < N_C$, if $I_{Ep} = 10$ mA, $I_{En} = 100 \mu$ A, $I_{Cp} = 9.8$ mA and	(5)						
		$I_{Cn} = 1 \mu A$, calculate the base transport factor and emitter injection efficiency.							
	b)	Draw the structure of a PNP transistor and explain the flow of different current	(5)						
		components in a pnp transistor under active mode of operation.							
	c)	Draw and explain the C-V Characteristics of an Ideal MOS capacitor. Derive the	(10)						
		expression for threshold voltage.							

-